
Using Approximate String Matching

Techniques to Join Street Names of

Residential Addresses

Free University of Bolzano-Bozen
Faculty of Computer Science

Bachelor of Science in Applied Computer Science

Roland Innerhofer-Oberperfler
Roland.Innerhofer-Oberper@unibz.it

Student No. 1135

Bachelor Thesis
Academic Year 2003/2004

1st Graduate Session - July 30, 2004

Supervisor Prof. Johann Gamper
Tutor Nikolaus Augsten

July 15, 2004

i

Abstract

For many administrative tasks at the Municipality of Bolzano-
Bozen a number of autonomous databases have to be accessed. In order
to compute these tasks more efficiently, the content of these databases
should be linked automatically. A promising join attribute are residen-
tial addresses, as they appear in more or less all databases. Standard
join techniques give poor results for joining address data. Reasons are
spelling mistakes, abbreviations, and different naming conventions for
street names. The main goal of this work is to overcome these prob-
lems by using approximate string matching techniques in order to find
good matches for street names.

In this thesis I analyze the accuracy and efficiency of two approx-
imate string matching algorithms for matching street names: q-gram
and edit-distance. This analysis is based on experiments using street
names of residential databases at the Municipality of Bolzano-Bozen,
and on experiments using virtual test sets. Moreover, I present two al-
gorithms to match two sets of street names. These algorithms use the
string matching algorithms to calculate the distance between strings.
Further, I present a tool, which uses the string matching techniques to
match street names from input-databases. This tool provides the user
with a good overview of the matches found in the input-databases.

ii

Contents

1 Introduction 1

2 Problem Description 2
2.1 Current Situation . 2
2.2 Objectives . 3

3 Approximate String Matching 4
3.1 Weighted Levenshtein Distance 4
3.2 Q-Grams . 5

4 Matching Street Names with Approximate String Matching 7
4.1 Matching Only the Best Matches 7
4.2 Matching all Best and Equal-Best Matches 9

5 Random String Generator for Experiments 12

6 Implementation 14
6.1 Approximate String Matching 14

6.1.1 Interface . 14
6.1.2 Q-Grams . 15
6.1.3 Weighted Levenshtein Distance 16

6.2 Data Linking - Matching Street Names with Approximate
String Matching . 17

7 Evaluation 19
7.1 Accuracy . 19
7.2 Performance . 21

8 Conclusion and Future Work 23

iii

1 Introduction

A typical situation found in a public administration environment is a number
of autonomous databases which store information about the same real-world
objects. For example, the registration office, the cadastre, and the electric
power company all store data about citizens and apartments. Although
they speak about the same objects, they are usually interested in different
relations between them, e. g. the registration office stores who lives in an
apartment, while the electric power company is interested in who pays the
electricity bill for it [ABG04].

The Municipality of Bolzano-Bozen has many autonomous databases,
where the content of the databases is very similar, but not equal. For several
tasks, these databases have to be joined.

Searching corresponding entries in different databases manually is te-
dious and often not feasible.

Joining the addresses with standard join techniques (SQL-join) ends up
with very poor results, as only exact matches are found. The problem hereby
is, that some databases don’t have a common key, that could be used as a
join attribute. The most common attributes found in the tables of the
databases are the residential addresses. So, to get virtually one database,
there has to be done a join on addresses.

In my work, I concentrate on street names. I match the street names
using approximate string matching techniques to overcome problems like
spelling mistakes, different spellings or abbreviations. In my thesis I use the
edit distance and the q-gram approximate string matching algorithms.

The paper is organized as follows. Section 2 describes the problems and
objectives of the Municipality of Bolzano-Bozen. In Section 3 the used ap-
proximate string matching techniques are presented in detail. In Section 4
I show how street names can be matched using the former introduced ap-
proximate string matching algorithms. Section 5 presents, how test data is
generated. Section 6 describes how the algorithms and the method to match
street names were implemented. In Section 7 I evaluate the accuracy of the
string matching algorithms and of the algorithms to match the street names.
Section 8 draws conclusions and points to future work.

1

2 Problem Description

Many tasks at the Municipality of Bolzano-Bozen require to access data
from different, autonomous databases, e. g. databases of the cadastre, the
electric power company, etc. Those databases sometimes hold the same
or approximately the same data. However, the databases do not always
have key values, which makes it hard to link their contents. The most
relevant common attribute, that is stored in the tables of the databases, are
residential addresses.

Unfortunately, addresses have some peculiarities. First, they are ref-
erenced with a different granularity level. The same apartment might be
referenced by street name, house number, and apartment number in one
database, but only by street and house number in another one. Second,
streets might have been renamed and this change has not been updated in
all databases. Finally, different databases might use different labels to enu-
merate apartments. This makes it very difficult to link data across databases
using standard join techniques [ABG04].

2.1 Current Situation

If someone needs to retrieve data from different databases, there are several
ways to get the data from the autonomous databases. One is to link the
needed databases with standard join techniques (SQL-query). As addresses
are the most relevant common attribute, a join on addresses is done. The
disadvantage of using this technique is, that not all data can be matched.
The reasons for this are manifold:

• spelling mistakes (’Keppler’ instead of ’Kepler’)

• abbreviations (’Giuliani P. R.’ in one database, ’Padre Reginaldo Giu-
liani’ in another)

• additional data (’piazza’, ’galleria’, ’via’ stored together with the street
name)

• data do not exist (entry in one database, which is not in the other)

For this reasons, manual lookup is currently the only method to link data
that cannot be matched with SQL-joins. This is a very time-consuming and
tedious task and does not always lead to good results.

The lookup can only be done with exact string matching or with pattern
matching. The problem hereby is that someone who searches for an entry,
might not know how an entry was abbreviated or written. Even with regular
expressions in SQL-joins an entry might not be found due to a different
spelling.

Concluding, neither SQL-joins nor manual lookup solve the problems of
getting corresponding data from different databases.

2

2.2 Objectives

The main objective of the thesis is to match street names of residential
addresses using approximate string matching techniques. This matching will
be used to join data across the autonomous databases of the Municipality
of Bolzano-Bozen using complete residential addresses as join attribute.

To reach the objective I implement two string matching algorithms. In
addition I design a method which allows to match street names, using these
approximate string matching algorithms. Furthermore, this method sup-
ports also the use of any other string matching algorithm.

The evaluation is based on the real street names of the residential ad-
dresses and also on virtual test sets. A generator for virtual test sets has
also to be implemented. The virtual test sets should have similar properties
to the real street names, in order to be relevant test sets.

3

3 Approximate String Matching Techniques

In this section I describe, which approximate string matching algorithms
were used and how they work. For this project I use 2 approximate string
matching techniques, namely q-gram and weighted Levenshtein distance
(shortly edit-distance).

Let
∑

be a finite alphabet of size |
∑
|. I use lowercase Greek symbols,

such as σ, possibly with subscripts, to denote strings in
∑∗. Let σ ∈

∑∗ be
a string of length n. I use σ[i...j], 1 ≤ i ≤ j ≤ n, to denote a substring of σ of
length j− i+1 starting at position i. λ denotes the empty string [GIJ+01b].

3.1 Weighted Levenshtein Distance

The Levenshtein distance – also known as edit distance – between two strings
is the minimum number of edit operations (i. e., insertions, deletions, and
substitutions) of single characters needed to transform the first string into
the second [GIJ+01b].

An edit operation is a pair (a, b) ∈ (
∑
∪{λ}) × (

∑
∪{λ}) \ {(λ, λ)}. It

is usually written as a → b. An alignment A of two strings σ1 and σ2 is a
sequence (a1 → b1, ..., ah → bh) of edit operations such that σ1 = a1...ah and
σ2 = b1...bh. A weight function δ assigns to each edit operation a→ b, a 6= b
a positive real weight δ(a → b). The weight δ(a → a) of an edit operation
a → a is 0. If δ(a → b) = 1 for all edit operations a → b, a 6= b, then δ is
the unit weight function. The weight δ(A) of an alignment A is defined by
δ(A) =

∑
a→b∈A δ(a → b). The weighted edit distance of σ1 and σ2 is the

minimum possible weight of an alignment of σ1 and σ2 [Kur96].

Example 1 Two strings, σ1 = ’Galeria’ and σ2 = ’Galleria’, are compared
with each other. The alignment A of the two strings is:

A = (G→ G, a→ a, l→ l, λ→ l, e→ e, r → r, i→ i, a→ a)

The weight δ(A) is then achieved by summing the costs δ(a → b) of all
edit operations a → b (where a and b are two characters). To get two
equal strings, the operation (λ → l) has to be carried out. In this case this
operation is an insertion, and has a cost of δ(λ→ l) = 1. For all other edit
operations the cost is δ(a → b) = 0, as a = b. So the weight δ(A) = 1. If
weighted differently, the results also differ.

Let cins be the cost of insertion, cdel the cost of deletion, and csubst
the cost of substitution. An algorithm for the calculation of the weighted
edit distance of two different strings σ1 and σ2 can be seen in figure 1 on
page 5. The time-complexity of the algorithm is O(|σ1| ∗ |σ2|), i. e. O(n2) if
the length of both strings is about ’n’ [All99].

4

function edit-distance(σ1, σ2)
// Input: two strings σ1 and σ2

// Output: similarity between σ1 and σ2 in cost of operations
// (the smaller the value, the better the match)
Create 2 vectors m1 and m2 of length |σ1|
for i← 0, ...|σ1| do

Initialize m1 with i ∗ cdel
endfor
for j ← 0, ...|σ2| do

m1(0) = m1(0) + cins
for i← 0, ..., |σ1| do

if σ1(i) = σ2(j) then
v = m1(i)

else
v = m1(i) + csubst)

endif
m1(i + 1) = min(m1(i + 1) + cins, m2(i) + cdel, v)

endfor
Exchange vectors m1 and m2 (m1 gets the m2-values and vice versa)

endfor
return m1(|σ1|)
endfunction

Figure 1: Weighted Levenshtein algorithm

3.2 Q-Grams

Given a string σ, its q-grams are obtained by “sliding” a window of length q
over the characters of σ. Since q-grams at the beginning and the end of the
string can have fewer than q characters from σ, I introduce a new character
“#” which is not in

∑
, and conceptually extend the string σ by prefixing

and suffixing it with q − 1 occurrences of “#”. Thus, each q-gram contains
exactly q characters, though some of these may not be from the alphabet

∑
[ST95, Ukk92, Ull77]. Gσ denotes the list of all the |σ|+ q− 1 q-grams of σ.

Example 1 We get the q-grams of length q = 3 for string σ1 = ’Street’
by first prefixing and suffixing the string with ’##’. By sliding a window of
length 3 over the resulting string ’##Street##’ the following q-grams can
be constructed: Gσ1

= {##S, #St, Str, tre, ree, eet, et#, t##}

The intuition behind the use of q-grams as a foundation for approximate
string processing is that when two strings σ1 and σ2 are within a small edit
distance, they share a large number of q-grams [GIJ+01a, Ukk92, ST95].
The following example illustrates this observation.

Example 2 The q-grams of length q = 3 for string σ1 = ’Street’ are listed
above. Similarly, the q-grams of length q = 3 for string σ2 = ’Steret’,

5

are Gσ2
= {##S, #St, Ste, ter, ere, ret, et#, t##} . The two q-

gram-lists Gσ1
and Gσ2

have 4 q-grams in common. This corresponds to a
50%-match.

The q-gram distance qgram(σ1, σ2) between two strings σ1 and σ2 is
defined as follows:

qgram(σ1, σ2) =
1
2

(
|Gσ1

⋂
Gσ2
|

|Gσ1
|

+
|Gσ1

⋂
Gσ2
|

|Gσ2
|

)
(1)

An algorithm for the calculation of the matching percentage
(matching quota) of two different strings σ1 and σ2 can be seen in figure 2
on page 6. Equal strings have a q-gram distance of 1 (= 100%). The smaller
the matching percentage, the more different the strings are.

function qgram(σ1, σ2)
// Input: two strings σ1 and σ2

// Output: matching-quota between σ1 and σ2 in %
match = 0
i = 0, j = 0
Generate the list Gσ1

from σ1 and the list Gσ2
from σ2

Sort Gσ1
and Gσ2

while (i < |Gσ1
| and j < |Gσ2

|)
if Gσ1

(i) = Gσ2
(j) then

match + +
i + +
j + +

else if Gσ1
(i) < Gσ2

(j) then
i + +

else
j + +

endif
endwhile
return ((match / |Gσ1

| + match / |Gσ2
|) / 2)

endfunction

Figure 2: Q-gram algorithm

To sort the lists Gσ takes O(n log n), with n = max(|Gσ1 |, |Gσ2
|). Going

through the resulting sorted lists to find the matches takes O(n).

6

4 Matching Street Names with Approximate
String Matching

This section shows how the former introduced approximate string match-
ing techniques can be used to match the street names of the residential
addresses.

Let R1 and R2 be the set of all street names of 2 different databases.
R1.σ1 refers to the string σ1 of set R1. Therefore R1.σ1 and R2.σ1 are not
necessarily equal. d(σ1, σ2) is the distance of two strings σ1 and σ2.

To match the street names I have designed two different methods. One
method is used to get only the best matches. With this method, there is the
possibility that not all matches are covered. The other method is used to
get all best and equal-best matches. It is more complicated and it may take
longer to collect all matches. However, with this method it is guaranteed
that all possible matches are found.

4.1 Matching Only the Best Matches

In this section I introduce a method, which is used to get matches of street
names, which is not completely accurate, but works quite fast and gets
the most of the matches. It is guaranteed that the very best matches are
collected.

Algorithm

Let R1 and R2 be 2 different data sources. Let Lp be the vector, where all
real matches are saved. Let L be a list, which contains the last found best
matches and T a temporary match. At the beginning L is empty.

The algorithm starts with the first string of R1 and compares it with any
other string of R2. The best matches found have then to be approved to be
valid matches. The approval is done by comparing the found matches with
all strings of R1. If a better match is found, the former match is discarded.
If all matches are discarded, then there does not exist a match for the first
string of R1. If all former matches are approved, the matching continues
with the next string of R2, which in this case would be the second one.

The algorithm to collect only the first best matches is shown in figure 3
on page 8.

Example 1 Table 1 on page 8 shows a distance matrix of two sets R1 and
R2. Distance matrix in this sense means a matrix, which holds the matching
quotas in percentage of different strings (σi) when compared with each other.

Taking table 1, the matching of street names would work as follows: First
R1.σ1 is compared with any other string of R2. If a match is calculated it
is also saved in a separate distance-matrix. The best match found, which

7

matchingStreetNames(R1, R2)
// Input: two string sets, R1 and R2,
// which hold street names
// Output: a list of all found matches (= the set Lp)
for i← 1, ..., |R1| do

L = empty
for j ← 1, ..., |R2| do

T = match(R1(i) with R2(j))
if T better or equal to L then

if T is better than L then
L = empty

endif
add T in L

endif
endfor
for j ← 1, ..., |R1| do

T = match(R1(j) with T)
if T better than L(0) then

continue with next i
endif

endfor
add all entries of L in Lp

endfor
return Lp

endfunction

Figure 3: Algorithm to match only the first best match

R1
. . . R2 σ1 σ2 σ3 σ4

σ1 70 60 0 20
σ2 90 80 10 10
σ3 10 10 30 50
σ4 0 0 80 20
σ5 0 0 80 5

Table 1: Collecting only the best matches

is (R1.σ1|R2.σ1) with 70%, has to be approved, so that it is a valid match.
Therefore, it is now compared with any other string of R1. (R1.σ2|R2.σ1)
turns out to be a better match with 90%, so the former found match is
discarded and will not be compared anymore.

So the next string of R1, which is R1.σ2 is again compared with any
other string of R2. The best match for R1.σ2 is now (R1.σ2|R2.σ1) with
90%. Again this match is approved to be a valid match, by searching a
better match for it in R2. As no better match can be found (R1.σ2|R2.σ1) is

8

saved in Lp.
The calculation of the matches for the other strings is done in the same

way. The values of the matches are underlined in table 1.

4.2 Matching all Best and Equal-Best Matches

In this section I introduce a method, which is used to get all possible
matches.

Algorithm

Let R1 and R2 be 2 different data sources storing street names. Let Lb be
a vector, which is used to temporarily save the best matches. Let Lp be the
vector, where all valid matches are saved.

In order for a match to be valid, the following conditions have to be true:

• the matching-quota is better than the user-defined matching-boundary

• the matching-quota is the best matching-quota for R1.σ and for R2.σ
when compared with all σ of R1 \ Lp and R2 \ Lp

The calculation of the matches works as follows: First I take a string
σ of R1. This string σ is then compared with every other string of R2 (
d(σ,R2(1...|R2|))). If all R2-entries were compared with σ, the resulting
match(es), if any, have to be verified to be valid matches. To verify the
found matches, I use all found matches for σ and compare them with almost
all strings of R1.

If now no better match is found, the found matches for σ are all valid
matches and can be saved. However, if at least one better match is found,
all former matches for σ are invalid and therefore not saved. The matches,
which are then found, which are better than the matches for σ, again have to
be verified. The verification is done as described above with the difference,
that now R2 is searched for better matches.

A better match for σ is not searched until the former illustrated recursion
ends. It may happen, that with many recursions σ will be matched without
returning from a recursion, but then it was matched due to the fact, that
another string was searched for a better match and not σ.

The algorithm to collect all matches is shown in figure 4 on page 10.

Example 1 In table 2 on page 10 there is an example of how this method
works. To have a comparison of the two methods I use the same distance-
matrix for this example. The underlined values are the finally found matches
which are different from the previous example.

Taking table 2, the matching of street names would work as follows:
First R1.σ1 is compared with any other string of R2. When a match is

calculated it is saved in a separate distance-matrix. The best match found,

9

matchingStreetNames(Lb, R1, R2)
// Input: the best matches found until now and two string sets,
// R1 and R2, which hold street names
// Output: a list of all found matches (= the set Lp)
for i← 1, ..., |Lb| do

for j ← 1, ..., |R1| do
if R1(j) = null then continue
if R1(j) is better than Lb(i) then

empty Lb and save R1(j) in Lb

else if R1(j) is equal to Lb(i)
add R1(j) in Lb

endif
endfor
if no better or equal match was found then

add all Lb in Lp

delete all corresponding entries of Lb in R1 and R2

if (|R2| = 0 or |R1| = 0) then
return Lp

else
Lb = empty match
matchingStreetNames(Lb, R1, R2)

endif
else

matchingStreetNames(Lb, R2, R1)
endif

endfor
endfunction

Figure 4: Algorithm to match all best and equal-best matches

R1
. . . R2 σ1 σ2 σ3 σ4

σ1 70 60 0 20
σ2 90 80 10 10
σ3 10 10 30 50
σ4 0 0 80 20
σ5 0 0 80 5

Table 2: Collecting all best and equal-best matches

which is (R1.σ1|R2.σ1) with a matching of 70% has to be approved, so that
it is a valid match. Therefore, it is now compared with any other string of
R1. (R1.σ2|R2.σ1) with a matching of 90% turns out to be a better match,
so the former found match is discarded.

(R1.σ2|R2.σ1) again has to be approved, so it is searched a better match
for (R1.σ2|R2.σ1) in R2. As there is found no better match, (R1.σ2|R2.σ1)

10

is saved as a valid match, with a matching quota of 90%. From now on,
R1.σ2 and R2.σ1 are not used anymore, when a better match is searched.

The next string, which is compared with all other strings is again R1.σ1.
As R1.σ1 was already compared with all other strings of R2, the best match
is found very quickly, as every comparison of strings is saved in the distance-
matrix.

The best match for R1.σ1 is now (R1.σ1|R2.σ2) with a matching of 60%.
Again the match has to be approved and is therefore compared with any other
string of R1.

This procedure of finding the best matches continues until a match for
all strings is found. The resulting matches are indicated in figure 4 by un-
derlined matching values.

Concluding, with this method R1.σ1 and R2.σ2 are matched together,
even if there would be a better match for R1.σ1 and a better match for R2.σ2.
Due to the fact, that the better matches for R1.σ2 and R2.σ1 are worse than
(R1.σ2|R2.σ1) = 90% the match of (R1.σ2|R2.σ1) = 60% is a valid match.

11

5 Random String Generator for Experiments

I’ve implemented a tool to generate virtual data for my experiments. It can
be used to produce a set of random strings or corresponding strings for a
given set of strings.

This generated strings are needed as test data to prove that the designed
and implemented method to match the street names (section 6.2) is valid and
that it works also with other data than the street names of the residential
addresses.

The method I have implemented for this purpose supports a lot of differ-
ent parameters. It is possible to set maximum and minimum length of the
generated strings. Moreover it is possible to say with which distribution the
length should be calculated. For example, there is the possibility of choosing
Gaussian distribution to set the length of the strings to be generated. This
was introduced due to the fact that the real street names have a minimum
length of about 10 and a maximum length of about 30. However, the most
common length is around 12-16 (see figure 5). It is also possible to generate
strings with uniformly distributed length.

Figure 5: Distribution of the length of real street names (AE and NC are
two sets of street names)

In addition to the length, also the distribution of characters can be in-

12

fluenced. For this purpose there exist two options:

1. the alphabet is equally weighted, so every character has the same
probability to appear;

2. the alphabet is weighted, so that every character has a different prob-
ability to appear.

The default weights for the second method were determined by analyzing
the two sets of street names that were used for the real world experiments.

By generating strings with Gaussian random length and with a distribu-
tion of characters as found in street names, good test data can be produced.
Moreover, not only street-name-like strings can be produced, but also ran-
dom strings following other distributions, which is helpful for testing the
matching algorithms of section 3.

To have a list of corresponding string pairs, I added a functionality which
allows to manipulate a string. The manipulation is done randomly. The user
sets only a boundary of manipulations to be carried out on the strings.

The actual amount of manipulations are random, but less then the set
boundary. It could be that also no manipulation is done on the string.
The manipulations which are carried out are also random and consist of the
following: insertion, deletion, and substitution of characters.

So with the latter method it is possible to generate string pairs which
are completely different, which are very similar, or which are something
in between. These generated string pairs are good test data to prove the
matching of street names.

A typical output of the tool can be seen in figure 6 on page 13.

LINE NUMBER INITIAL APPROX
1 tnsiigealaptpvaieaoaitidfe tvnsiigalapnpvviedaroaoitceddf
2 venudatgaaaooaerinamosb venuditoaaaooaerinamosb
3 ibiivcodoaotizidievezotai iabinvcodtolvvilzidieezotai
4 pscpieaglvsvaaucoqenbraa pslcpieaehlviavaaucoqenbra
5 zoadsivvmnzfilviptafaipeco olintvvnafliitetfaipico
6 loioaiacvezlilzeanolovbbeg olodiaiacvezlilznonolovbbeg
7 lozbtsvrpfovglozinoeltad lztsvrpfoolozinaoeltad
8 airidavltlarladcfaaunvaav tiridallarlacfaaunvaiv

Figure 6: Output of the string generating tool: random string pairs with at
most 20 differences

13

6 Implementation

This section gives an insight into the realization of the project, explaining
basic functionalities, as well as implementation details. This section starts
with the implementations of the approximate string matching techniques,
q-gram and edit distance. Then an interface is introduced, which is useful to
use any kind of string matching algorithm for matching strings, i. e. street
names. Immediately after the interface the method and the accompanying
tool of matching the street names is presented. Finally, this section con-
tains also the code for the class, which creates virtual data for experiments,
namely random strings, or random string pairs, which can be used as input
data for the former mentioned tool.

6.1 Approximate String Matching

In this section the code of the two approximate string matching techniques,
q-gram and edit distance, as well as an interface to use any kind of string
matching technique when matching streets, are presented.

6.1.1 Interface

So that the mentioned algorithms, q-gram and weighted Levenshtein dis-
tance, and also every other string matching algorithm can be used to match
street names, an interface was implemented. This interface contains all
methods needed for a string matching algorithm, when used to match street
names.

The interface has the following methods:

Listing 1: Overview of the methods of the interface StringMatching:
public double d i s t ance (Str ing , S t r ing)
public double be t t e rD i s tance (Str ing , Str ing , double)

public boolean isWorse (double , double)
public boolean isWorseOrEqual (double , double)
public boolean i sB e t t e r (double , double)
public boolean i sBetterOrEqual (double , double)

public double getBoundaryValue ()
public void setBoundaryValue (double)
public boolean i sVa l i d (double)

public double getBestValue ()

The method distance(String,String) is the most important method
of the interface. It should return a distance between the two string-
parameters. To allow using any kind of distance, for example either
percentage or edit-distance, the methods isBetter(double,double) and
isBetterOrEqual(double,double) are implemented to specify whether a

14

distance is better or worse than another. With this methods any kind of
string matching algorithm can be reused, when matching data-arrays (not
only 2 strings).

betterDistance(String,String,double) is still experimental. This
method should have the functionality of avoiding the comparison of two
strings, if it can be calculated (using the length of the strings), that a com-
parison does never reach a better distance than the double-parameter.

The last 4 methods are not needed to match 2 strings. However,
they are useful to match whole data-arrays, which both could hold more
than 1 string, i. e. this is the case when matching the street names.
setBoundaryValue(double) and getBoundaryValue() are used to set and
get the boundary value for a string matching to be valid. This boundary
value is used by isValid(double), which has the purpose to limit the found
matches. The limitation is done by collecting only the matches, which are
better than the boundary value. getBestValue() was not used until now.
It should return the value, when both strings are equal, ignoring case sensi-
tivity.

6.1.2 Q-Grams

Section 3.2 already shows how the q-gram-algorithm is defined and how it
works. In this section I show some peculiarities of the implemented method.

The q-gram-algorithm was implemented in the class StringMatch-
ing QGram. The class implements the interface StringMatching, so it can
be used when matching the street names. For an overview of what this class
can do, see section 6.1.1.

This class has the following constructors, with which different parameters
can be set:

Listing 2: Constructors of StringMatching QGram:
public StringMatching QGram ()
public StringMatching QGram (int)
public StringMatching QGram (double)
public StringMatching QGram (int , double)

The first constructor is the default constructor. It can be used to create
a string-matching-object with q = 3 and with a minimum allowed match of
−0, 01.

The other constructors are used to set a user-defined value for q and/or to
set a user-defined value for the minimum allowed boundary. The minimum
boundary has only sense for matching sets of strings, i. e. the street names.
If a match is less than the minimum boundary, it is not recognized as a valid
match and is therefore not saved (see section 4).

15

6.1.3 Weighted Levenshtein Distance

Section 3.1 already shows how the edit distance algorithm is defined and
how it works. In this section I show some peculiarities of the implemented
method.

The edit-distance algorithm was implemented in the class StringMatch-
ing WLD. The class implements the interface StringMatching, so it can be
used when matching the street names. For an overview of what this class
can do, see section 6.1.1.

In order to make the distance symmetric with different weight of opera-
tions, I calculate:

distance =
1
2

(
rightDistance(σ1, σ2) + rightDistance(σ2, σ1)

)
rightDistance in this case is the standard method to calculate the

distance of two strings σ1 → σ2. If unit weighted, the edit distance can be
calculated, by simply using rightDistance once.

The class has the following constructors with which different parameters
can be set:

Listing 3: Constructors of StringMatching WLD:
public StringMatching WLD ()
public StringMatching WLD (int , int , int)
public StringMatching WLD (double)
public StringMatching WLD (int , int , int , double)

The first constructor is the default constructor. It can be used to create a
string-matching-object with the following weight of operations: insertion =
1, deletion = 1 and substitution = 1. The maximum amount of operations
is Double.MAX VALUE.

The other constructors are used to set a user-defined value for the weight
of operations and/or to set a user-defined value for the maximum amount
of allowed operations. The maximum amount of operations has only sense
for matching arrays of strings, i. e. the street names. If a distance is greater
than the maximum amount of allowed operations, it is not recognized as a
valid distance and is therefore not saved as a match (see 4).

16

6.2 Data Linking - Matching Street Names with Approxi-
mate String Matching

In this section I present a tool (Data Linking) which I’ve designed to match
street names of different data sources (e. g. databases or text files). How
the matching is done is written in section 4 on page 7.

When starting the tool, the main window appears. The main window
consists of two parts: the menubar and the quick menu.

The quick menu has a particular role. It changes after the user carries out
an operation. If, for example, a set of street names is loaded into “data(1)”,
either from file or from a database, the text on the first button changes to
“Show Data (1)” (figure 7).

Figure 7: The quick menu changes, if an operation was carried out

Even if the quick menu now only shows “Show Data (1)” it is still possible
to load data into the data(1)-array. The corresponding option can be chosen
from the menubar.

So, to conclude the advantages of the quick menu: The quick menu
should be a signpost for all who have never used the tool, but it can be also
helpful for those who want to do their work quite fast.

The tool supports import and export of data. The import can be done
with files or from a database. Supported files are all which are delimited
by a character or character sequence, e. g. ’\t’ (for tabulator), ’;’, etc. It
is possible to set also field delimiter, if there are needed any. Moreover, it
can be decided, whether a specific column is imported. This decision can
be made by simply putting the number of column to import or by putting
the column-name to import into the appropriate fields (figure 8). For now
the import-from-database option works only with MySQL and MSAccess. It
is marked “still experimental” due to the fact that a user has to set many
options outside of the program, e. g. an ODBC-datasource has to be set,
if an MSAccess-database has to be accessed. However, the import from
databases option works, if all necessary requirements are given.

In the window of “Apply matching” the different approximate string

17

Figure 8: The import-from-file dialog and its options

matching techniques can be chosen. For now only q-gram and edit distance
are in the combobox, but due to the implemented interface, it is possible to
add any string matching algorithm.

If a string matching algorithm is chosen, the window changes slightly due
to the fact that different string matching algorithms need a different amount
of parameters. For example, using edit distance requires to set the weight of
the operations which need 3 textfields (1 for insertion, 1 for deletion and 1
for substitution). However, q-gram only takes one textfield to set q. In this
case both algorithms have also the field boundary value.

After setting all preferences for the string matching algorithm, the data
can be matched. The dialog “Apply matching” remains open until the
matching is finished.

After the matching is done, the “Apply matching” window closes and
the quick menu changes again. Now it is possible to show all found matches.
From the window, where all matches are listed, it is also possible to export
the data.

At every time it is also possible to review the imported data. In fact the
frame, which is used to show the matches and the frame, which is used to
show the imported data, are the same. Therefore also both windows support
the option of exporting the data.

18

Figure 9: Left: The Apply matching button changed to Show matches —
Right: The list of all found matches, beginning with the worst match

7 Evaluation

In this section I evaluate the different approximate string matching algo-
rithms to find good matches for street names. For the tests I use the imple-
mentation described in section 4.2.

7.1 Accuracy

Both approximate string matching techniques, q-gram and edit distance,
gave good results with real street names of residential addresses as well as
with random generated string pairs.

When speaking of “matches” I mean all the matches, which were found.
With “valid matches” I refer only to a part of all matches, namely the
matches, where real objects point to each other correctly. So, all found
matches without the valid matches would give a list of all incorrect matches.

In this section I show the results of three experiments, which all used
the all best and equal-best matches-method: One experiment studies the
impact of parameters. The parameters are q for the q-gram algorithm and
the different weights for the weighted Levenshtein distance. The two other
experiments compare the different approximate string matching algorithms,
to identify, which algorithm works better for matching street names.

Experiment 1

In the first experiment I’ve used the q-gram algorithm and weighted Leven-
shtein distance with different parameters to match the real street names.

Starting with the q-gram algorithm, I matched the street names with
different values for q.

Figure 10 shows the matching quota of the q-gram-algorithm, when used
to match the street names with different values for q. I set the boundary

19

value to 60 %, which means that every match which has a better match
than 60% is collected and every match below 60 % is not collected. “Q-
gram matching quota” shows the number of all found matches, whereas
“actual matching quota” is the overall number of valid matches. So, the
“actual matching quota” is the more interesting quota.

Figure 10: Matching quotas of the q-gram-algorithm with different values
for q

If q is around 3 a lot of matches are found. However, these matches
are not all valid matches. Only for q = 3 all found matches are also valid
matches.

Summarizing, the best value for q for matching street names is 3. In
addition all these found matches are valid matches for a lower boundary of
60 %.

The edit distance algorithm was tested with different parameters, i. e. the
weight of operations (cost of insertion, cost of deletion, cost of substitution)
was altered. I’ve written a small program, which tests many of the different
possibilities of the parameters for matching the street names. However the
edit distance algorithm never reached the same quality when matching, as
the q-gram-algorithm. The best result was got, when cost of insertion was
1, cost of deletion 5 and cost of substitution 6. However, the matches found
were not all valid.

Summarizing, when using edit distance for matching street names the
weights should not be unit weight. However, I cannot suggest any values
for the weighting as with different street names or test data the result may
vary.

Concluding, the q-gram algorithm is the better choice for matching street
names as the best value for q is 3. Additionally, the q-gram algorithm is
faster and more accurate.

20

Experiment 2

In the second experiment I show how the matching of street names is done
using the q-gram algorithm. In this experiment I do not set a lower bound-
ary for the matches, which means that every match is collected, even if
q-gram(σ1, σ2) = 0.

The results of the experiment are the following:

Figure 11: Matching street names with the q-gram algorithm

Completely equal matches are not listed in the figure, because the most
matches are completely equal and I want to concentrate on the matches,
which are achieved using approximate string matching.

From figure 11 we can see that at 50% there is no match, but below
this % there are again matches. In this case all matches below 50 % are all
incorrect matches and above 50% are valid matches. This allows a clean
separation of valid and incorrect matches.

Concluding, matching street names with the q-gram algorithm is best
used when setting a lower boundary with at least 50 %.

Experiment 3

In the third experiment I show how the matching of street names is done
using the weighted Levenshtein distance. In this experiment I do not set a
lower boundary for the matches, which means that every match is collected,
even if the distance is very high. In addition I use the unit weighted edit
distance.

When looking at the edit distance algorithm most matches were also
valid, but between some real matches there were some false matches with

21

a quite low edit distance (note: small values for edit distance are better
matches!). There is no threshold that allows us to classify valid and incorrect
matches, as with the q-gram algorithm. Within edit distance = 4 all matches
are valid.

In figure 12 the matching of street names using the weighted Levenshtein
distance is shown. Again the completely equal matches are not listed.

Figure 12: Matching street names with weighted Levenshtein distance

Discussion of Experiment 2 and 3

When matching random generated data with few differences both approxi-
mate string matching techniques lead to good results. The higher the dif-
ferences of the random string pairs got, the more error-prone the techniques
work. However, in most cases the q-gram algorithm gives better results than
the edit-distance algorithm.

Comparing the q-gram technique with the weighted Levenshtein distance,
one can see that with the weighted Levenshtein distance there are two hot
spots, while with q-gram the good matches show a bell-shaped distribution.

Additionally, for edit distance I can not partition valid and incorrect
matches by simply choosing a threshold on the distance. In fact invalid
matches already appear with an edit distance of 5.

Concluding, when matching street names the q-gram algorithm leads to
better results. Moreover, with the q-gram algorithm a threshold can be fixed
to separate valid from incorrect matches. The experiments on virtual test
sets confirm these results.

The weighted Levenshtein distance instead gets valid matches only below
an edit distance of 4 if unit weighted. If the weight of operations changes, the
boundary value has to be changed too. The weighted Levenshtein distance

22

was tested with different weighted costs for operations, but always got worse
matches than the q-gram technique.

7.2 Performance

The O-notations of the approximate string matching algorithms were already
introduced in section 3. Concluding, the implemented q-gram-algorithm,
which is O(n log n) in time, is much faster than the edit-distance, which is
O(n2) in time. However, both approximate string matching algorithms are
adequately fast enough for matching the street names.

When choosing good matches performance becomes an issue. The al-
gorithm is reasonably fast only, if about R1 = 1000 ∗ R2 = 1000 strings
are matched. Beyond this boundary the algorithm gets continuously slower.
The reason for that is, that the method was implemented using a recursive
call. If the matching is done by collecting only the first best matches, the run-
time is faster. If larger arrays of data are matched, an OutOfMemoryError
might occur for both methods. This error can be avoided if the program
is started with additional parameters for the java virtual machine in which
the heap-size is enlarged.

23

8 Conclusion and Future Work

In this thesis I describe two tools, which I’ve developed. One tool is used to
match street names stored in databases or in text files. The other tool is used
to create virtual data for experiments, namely random strings or random
string pairs. These can be used as input data for the former mentioned tool.
The distribution for the random strings was given by analyzing the street
names of the databases given from the Municipality of Bolzano-Bozen.

The method with which the street names are matched is quite fast with
small amount of data. “small” in this case means less than 1000 times 1000
strings. Beyond this boundary the method gets slower and slower and the
heap size for the virtual machine must be increased, so that the matching
can be done.

The main method which is used to match the street names should be re-
placed with a non-recursive function if larger data arrays have to be matched.

Other approximate string matching algorithms which implement the in-
terface StringMatching could be written to have a greater variety of string
matching algorithms. So there might be a string matching algorithm for
every purpose.

24

References

[ABG04] Nikolaus Augsten, Michael Böhlen, and Johann Gamper. Reduc-
ing the integration of public administration databases to approx-
imate tree matching. In proceedings of the Third International
Conference on Electronic Government, 2004.

[All99] Lloyd Allison. Dynamic programming algorithm (dpa) for
edit-distance. 1999.
http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Dynamic/Edit/

(from 09/07/04).

[GIJ+01a] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick
Koudas, S. Muthukrishnan, Lauri Pietarinen, and Divesh Sri-
vastava. Using q-grams in a DBMS for approximate string pro-
cessing. IEEE Data Engineering Bulletin, 24(4):28–34, 2001.

[GIJ+01b] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick
Koudas, S. Muthukrishnan, and Divesh Srivastava. Approximate
string joins in a database (almost) for free. In Proceedings of the
27th International Conference on Very Large Data Bases, pages
491–500. Morgan Kaufmann Publishers Inc., 2001.

[Kur96] Stefan Kurtz. Approximate string matching under weighted edit
distance. In Proceedings of Third South American Workshop on
String Processing August 1996 Carlton University Press, Recife,
Brazil, August 1996.

[ST95] E. Sutinen and J. Tarhio. On using q-gram locations in approx-
imate string matching. Proceedings of Third Annual European
Symposium (ESA ’95), pages 327–340, 1995.

[Ukk92] E. Ukkonen. Approximate string matching with q-grams
and maximal matches. Theoretical Computer Science (TCS),
92(1):191–211, 1992.

[Ull77] J. Ullman. A binary n-gram technique for automatic correction
of substitution, deletion, insertion, and reversal errors in words.
The Computer Journal, 20(2):141–147, 1977.

25

