
A Distance Measure for Approximate
Joins over Residential Addresses

Free University of Bolzano/Bozen
Faculty of Computer Science

Bachelor of Science in Applied Computer Science

Student: Davide Schuen

Supervisior: Johann Gamper
Tutor: Nikolaus Augsten

Academic Year 2003/2004
2nd Graduation Session - October 29, 2004

October 14, 2004

i



Abstract

The Municipality of Bolzano-Bozen has databases that store dif-
ferent information about the citizens. Data about a single object is
distributed over several data sources. For some administrative tasks
the data inside these heterogeneous and autonomous databases has to
be joined. Applying standard joining techniques ends up with poor
results, as there are no common keys. The data shows irregularities
because of spelling mistakes, abbreviations and different naming con-
ventions in the data fields. This work proposes a distance measure on
common attributes of the databases, the addresses and the personal
data. This measure is used to approximately join tuples coming from
different databases.

In this thesis I analyze the accuracy of the matches by evaluating
a number of experiments executed on the databases of the cadastre,
registration office and the electric power company. A tool generates
the experiments applying the distance measure on residential and per-
sonal data of two tuples using q-grams and edit distance algorithms.
The data is cleaned to improve the quality and quantity of good ap-
proximate matches.

ii



Contents

1 Introduction 1

2 Problem Description 2
2.1 Data at the Municipality of Bolzano . . . . . . . . . . 2
2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Approximate String Matching
Techniques 3
3.1 Weighted Levenshtein Distance . . . . . . . . . . . . . 4
3.2 Q-Grams . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Approximate Matching of Data
Records from Different Databases 5
4.1 Source Data Files . . . . . . . . . . . . . . . . . . . . . 5
4.2 Cadastre Data Extraction . . . . . . . . . . . . . . . . 7
4.3 Import Text Files . . . . . . . . . . . . . . . . . . . . . 8
4.4 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . 9

4.4.1 Checked Attributes . . . . . . . . . . . . . . . . 10
4.4.2 Error Checking . . . . . . . . . . . . . . . . . . 10

4.5 Data Matching . . . . . . . . . . . . . . . . . . . . . . 11
4.5.1 Similarity Measure . . . . . . . . . . . . . . . . 11
4.5.2 Matching Records on Personal and Address Data 12
4.5.3 Matching Table . . . . . . . . . . . . . . . . . . 13
4.5.4 Improving Efficiency . . . . . . . . . . . . . . . 14

5 Implementation 16
5.1 Cadastre Data Wrapping . . . . . . . . . . . . . . . . 16
5.2 Data Matching . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Java Implementation . . . . . . . . . . . . . . . . . . . 19

6 Evaluation 22
6.1 Match Cadastre - Registration Office Data . . . . . . . 22
6.2 Match Registration Office - Electric Power Company

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Conclusion and Further Work 25

iii



1 Introduction

This introduction section will provide the necessary background in-
formation on the topic and then state the actual definition of the
project. At the end a brief outline of the contents will give insight
into the structure of this thesis.

A typical situation found in a public administration environment
is a number of autonomous databases which store information about
the same real-world objects. The Municipality of Bolzano-Bozen has
many autonomous databases, where the content of the databases is
very similar, but not equal. For example, the registration office, the
cadastre, and the electric power company all store data about citi-
zens and apartments. Although they speak about the same objects,
they are usually interested in different relations between them, e.g.
the registration office stores who lives in an apartment, while the elec-
tric power company is interested in who pays the electricity bill for
it. For several tasks, these databases have to be joined. Searching
corresponding entries in different databases manually is tedious and
often not feasible. Joining the addresses with standard join techniques
(SQL-join) ends up with very poor results, as only exact matches are
found. The problem hereby is, that some databases do not have a
common key, that could be used as a join attribute, as the databases
are referenced with a different granularity level. The most common
attributes found in the tables of the databases are the residential ad-
dresses and the personal data. So, to get virtually one database, there
has to be done a join on addresses and personal data [1].

The project not only means implementing a piece of software, but
rather consists also of the whole analysis, planning and evaluation
work that needs to be carried out. Therefore this thesis shall also
describe the theoretical background of the project realization by pro-
viding insight in the whole development process, also revealing the
difficulties faced and corresponding problem solutions proposed. Sec-
tion two illustrates the problem description at the Municipality and
lists the objectives in the project. Section three describes the string
matching algorithms used to match approximately the data records of
the different databases. Section four lists all steps necessary for join-
ing the databases. It describes step by step the work that has to be
done to get the correspondent records as well as details in the imple-
mentation. Section five gives an insight on the implementation of the
two developed applications relying on the different acquired matching
techniques. Section six contains the experiments of the calculated re-
sults as well as an accuracy analysis of the found matches. Section
seven draws some conclusion and proposes further improvements.

1



2 Problem Description

We want to match correspondent records of different databases at the
Municipality of Bolzano. The databases used for the matching are
the databases of the cadastre, registration office and electric power
company.

2.1 Data at the Municipality of Bolzano

In our project we consider 3 databases used by the the Municipality of
Bolzano-Bozen to provide their services to the citizens. This databases
are the cadastre, the registration office and the electrical power com-
pany. The Municipality want to have all relevant data about each
address. The goal is to have a map which acts as an interface to all
addresses. With help of this interface one is able to extract relevant
data from different databases for a particular building in the city. We
have to build a matching table which matches correspondent records
in different tables (figure 1 on page 3).

Example: Mrs. Palazzetto Maria is registered at the registration
office. She is born on the 25.05.1967 in Bolzano, lives in Viale Druso
23, apartment number 2, floor 3. We find the correspondent record in
the cadastre. We get additional information on the building where she
lives. The cadastre tells us that Mrs. Palazzetto Maria born on the
25.05.1967 in Bolzano lives in Druso 23, apartment number 2, parcel
of land 1034 registered on the 19.04.1980. We match this data with the
electric power company to gather information about the person which
pays the electricity bill for this apartment. The correspondent match
demonstrates that Palazzetto Carlo, born on the 12.02.1947 in Trento
pays the electricity bill for the apartment in Viale Druso 23, apartment
number 2, internal 1, floor 3.

2.2 Objectives

The main objective of the thesis is to match records of three tables.
The distance measure is computed using address and residential data
as joining attributes. The matching is applied on the autonomous
databases of the cadastre, registration office and the electric power
company.

I have implemented two tools: the first program extracts the data
out of the text files to make it suitable for a relational database. The
second tool cleans and matches the data with approximate string
matching algorithms. An analysis on the calculated results is done
to estimate the reliability and exactness of the results.

2



Figure 1: Match table and correspondent records in the tables

Exact joins on the address attributes give poor results. Only few
correspondences can be found using standard joining techniques on
residential data.

SELECT T1.*, T2.*
FROM T1, T2

WHERE T1.address = T2.address

By applying approximate join techniques on residential and per-
sonal data of two tables, we build a matching table M where we save
the key values of the correspondent records. We can take advantage
of the matching table to get the correspondent records in the tables.
id1 and id2 are the key value of the tables. M(id1, id2) is the match
table containing correspondent records.

SELECT T1.*, T2.*
FROM T1, T2, M
WHERE T1.id1=M.id1 AND T2.id2=M.id2

3 Approximate String Matching

Techniques

In this section I am going to describe, which approximate string match-
ing algorithms were used and how they work. For this project I use 2
approximate string matching techniques, namely q-gram and weighted
Levenshtein distance (shortly edit-distance).

3



Let Σ be a finite alphabet of size |Σ|. I use lowercase Greek sym-
bols, such as α, possibly with subscripts, to denote strings in Σ∗. Let
σ ∈ Σ∗ be a string of length n. I use σ[i...j], 1 ≤ i ≤ j ≤ n, to denote
a substring of σ of length j -i+1 starting at position i. λ denotes the
empty string.

3.1 Weighted Levenshtein Distance

The Levenshtein distance - also known as edit distance between two
strings is the minimum number of edit operations (i. e., insertions,
deletions, and substitutions) of single characters needed to transform
the first string into the second [2].

An edit operation is a pair (a, b) ∈ (Σ∪ {λ})× (Σ∪ {λ}) {(λ, λ)}.
It is usually written as a → b. An alignment A of two strings σ1 and
σ2 is a sequence (a1 → b1, ..., ah → bh) of edit operations such that
σ1 = a1...ah and σ2 = b1...bh. A weight function δ assigns to each edit
operation a → b, a 6= b a positive real weight δ(a → b). The weight
δ(a → a) of an edit operation a → a is 0. If δ(a → b) = 1 for all edit
operations a → b, a 6= b, then δ is the unit weight function. The weight
δ(A) of an alignment A is defined by δ(A) = Σa→b∈Aδ(a → b). The
weighted edit distance of σ1 and σ2 is the minimum possible weight of
an alignment of σ1 and σ2 [3].

3.2 Q-Grams

Given a string σ, its q-grams are obtained by ”sliding” a window of
length q over the characters of σ. Since q-grams at the beginning
and the end of the string can have fewer than q characters from σ, I
introduce a new character “#” which is not in Σ, and conceptually
extend the string σ by prefixing and suffixing it with q−1 occurrences
of “#”. Thus, each q-gram contains exactly q characters, though some
of these may not be from the alphabet Σ [4]. Gσ denotes the list of
all the |σ|+ q − 1 q-grams of σ.

The intuition behind the use of q-grams as a foundation for ap-
proximate string processing is that when two strings σ1 and σ2 are
within a small edit distance, they share a large number of q-grams.
The q-gram distance qgram(σ1, σ2) between two strings σ1 and σ2 is
defined as follows: [3]

qgram(σ1, σ2) =
1
2
(
|Gσ1 ∩ σ2|
|Gσ1 |

+
|Gσ1 ∩ σ2|
|Gσ2 |

) (1)

4



4 Approximate Matching of Data

Records from Different Databases

This section describes in detail the various steps followed to match the
data at the Municipality. Figure 2 illustrates various steps followed to
match 3 autonomous heterogeneous databases of various departments
at the Municipality of Bolzano-Bozen. The work is divided into four
main parts:

1. Cadastre Data Extraction

2. Import of the Text Files

3. Data Cleaning

4. Data Matching

Figure 2: Flowchart diagram

4.1 Source Data Files

The starting point are the text files provided by different departments.
Each single department provided a text file, semicolon or tab sepa-
rated, of his database respectively. A description of the provided data

5



Figure 3: Semicolon separated registration office text file

Figure 4: Semicolon separated Electric Power Company text file

is deliberate together with the data.
The registration office text file stores personal data (surname, name,
birth date and tax number) of citizens which are registered and live in
Bolzano-Bozen and their primary address (street name, house num-
ber, internal apartment number...) (Figure 3 on page 6).
The electric power company text file is a semicolon separated file that
stores personal data (surname name as joined information and tax
number) and addresses (street name, house number, internal apart-
ment and floor number) for the citizens that pay the electricity bill
(see Figure 4 on page 6). Every person who wants electric power in
his department has also to pay the bills and therefore it is registered
at the electric power company.The residence data is accurate because
of the periodically electricity meter inspection of an employee of this
department. The data regarding the person is less accurate.
The cadastre text file provides 3 different files. These three tab sepa-
rated files are generated from their hierarchical database holding in-
formation about the apartments (street name, house number, internal,
floor, parcel of place, cost of the parcel, number of the parcel...) and
the persons (surname, name, birth date, tax number, place of birth...)
owing the apartments in the city (Figure 5 on page 7). The cadastre is
the department that controls all the real properties and their owners
of the municipality of Bolzano-Bozen. It holds personal data as well as
detailed information about the properties located in the Municipality
of Bolzano-Bozen.

6



Figure 5: The three tab separated cadastre text files

4.2 Cadastre Data Extraction

The data provided by the cadastre is not suitable for a relational
database. The cadastre department provides a zip file that contains 3
tab separated files. The 3 cadastral text files (see figure 5 on page 7)
have to be parsed to extract the required information.

The first input file (see figure 5), the Building File contains infor-
mation about the building. The first 6 attributes of each record form
the key of the record. One of these attributes contain a number that
determines the type of data. With respect to this number we can parse
the text file and there are generated five new output files containing
structured information. The generated text files are the following: 1)
real estate, 2) identification, 3) address, 4) municipality, 5) reserve.
Each of these files contain different information about an object. A
record has not a fixed length of data attributes, which means that
data of 2 records can be merged in one single record. If this is the
case the record is split in 2 single records. A second input file, the
Subject File, contains information about the subject or person. The
first 4 attributes of each record form the key of the record. One of
these attributes contain a character that determines the type of data
(P stands for physical person, G stands for juridical person). With
respect to this character we can parse the text file and two new out-
put files containing structured information are generated. The new
generated files are: 1) physical person, 2) legal person. This file has
not merged records on a single key which facilitates the work of split-
ting the data records. The third file, the Owner File, with information

7



Figure 6: Entity relationship diagram of the cadastre files

about the owner is already structured, because it contains data of only
one type. The first 6 attributes of each record form again the key of
the record.

The data provided as text files by the cadastre department, have
been extracted out of their hierarchical database. As we want to
import the data in a relational database this data is not suitable in
the form it is provided by the cadastre. We have to bring it on a
structure of a relational database for a correct import in a MySql
DBMS (Database Management System). By studying the content of
the files and applying the description of the data from the ”data set
structure manual” provided by the cadastre, we are able to build an
ER-diagram (see figure 6 on page 8). The ER-diagram shows the
relationship between the tables and which attributes we find in each
relation.

4.3 Import Text Files

This step requires the import of the text files in a database. The
following three imports take place: import cadastre text files, import
registration office text file, import electric power company text file. In
our project we use the MySql DBMS. The data we want to work with

8



Figure 7: Joined data of the cadastre files

has to be imported in a database. Each table represents a department
of the Municipality of Bolzano-Bozen. We import all the text files in
a database. The registration office and the electric power company
files, which are provided as *.csv files, have already present all their
information in one text files. The tab separated cadastre files are
imported in the database. Following the ER-diagram (see figure 6 on
page 8) we join the data and collect the needed data in one single
table, to be compatible with our matching algorithms (see figure 7 on
page 9). and the tables are joined.

4.4 Data Cleaning

The data present in the tables is heterogeneous and shows different
levels of accuracy. The fact that many persons insert records and ad-
ministrate the databases creates a variation in the data. In order to
achieve a good matching level the data containing errors has to be
cleaned in advance. Data with well known pattern has to follow the
standard defined rules. Following this basic rules we will be able to
achieve a better similarity between the matching records. The clean-
ing algorithms are applied on the three tables used for the matching.
The cleaning algorithms concentrate on the six data fields which are
used to build the matches. This cleaning procedure produces a better
approach by executing simply a MySql query and also for the de-
veloped matching algorithms. With the cleaning procedure it is also
intended to remove its relevant data, which means columns not present
in all three databases are deleted because they are not relevant for the
matching algorithms.

The tables demonstrate a different level of irregularity. The cadas-
tre table has many irregularities in it. Because of the absence of
standardized rules for the data insertions and since its digital birth in
the latest ’70 the data became more and more heterogenous.

The electrical power company provides a table holding old street
names. Through a translation table holding the registration office and
the electrical power company the old street names are updated with

9



the newer once. This update affects 120 of the total 301 streets. 18339
records are updated. This correction is done using standard MySql
updates.

4.4.1 Checked Attributes

The surname as well as the name of a person is scanned for non valid
characters. A person can only contain characters and spaces. Numbers
and special characters are recognized as suspicious data (e.g. Marcheg-
giani Claudi0, Pez7o Giuseppe).
The tax number of a physical person is checked for its well defined pat-
tern. The first 6 are characters which identify the surname and name
of the person followed by two numbers specifying the year, followed
by a character for the month and two numbers regarding the day of
birth. After this a character and 3 numbers specify the place of birth
concluding with a check character bit. Entries having a different data
pattern are marked as suspicious data.
The street name is checked for non legal characters such as numbers
and special characters (Via Maso De11a Pieve, Via R@ma).
The house number is checked for non legal characters. Slashes can
indicate a building that contain two house numbers, which is the case
when a house borders on two streets (e.g. 32/34). In this case the 2
house numbers could be separated for generating a new record. If a
character is found near a house number (e.g. 2D) it will probably be
a division number for this building. In this case the character could
be a division attribute. The birth date of a person is checked for its
”day.month.year” (dd.mm.yyyy) pattern, with no characters spaces
or other not valid characters in it. The similar (ddmmyyy) pattern
with missing punctation is also a valid pattern because it is seen as a
special case in the matching algorithm.

4.4.2 Error Checking

The suspicious data is find using regular expressions. A regular ex-
pression (sometimes abbreviated to ”regex”) is a way for a computer
user or programmer to express how a computer program should look
for a specified pattern in text and then what the program is to do
when each pattern match is found.

Example: The regex .{6}\d{2}.{1}\d{2}.{1}\d{3}.{1} checks
the correctness of the tax number like (SCHNFR74T23A952R). The reg-
ular expression specifies the format of a standard tax number which is:
6 characters, 2 digits, 1 character, 2 digits, 1 character, 3 digits and
1 character. Example of false tax numbers found (LTRPTR23E21E959,

10



PRFDSG12T23984D).
The regex \d+ checks the exactness of names. No digits are allowed
in this pattern (e.g. Zona 1ndustraile, Mari0, Costan7i).
The regex \d{2}.?\d{2}.?\d{4} controls the format of the birthdate
which has to be of type (dd.mm.yyyy or ddmmyyy). Non admissible
dates are found e.g. 21.111980, 3.09.1979

4.5 Data Matching

When the data is cleaned it is ready to be matched. The matching
algorithm requires 2 relations with residential and personal data used
as matching attributes. For each entry in one relation we want to find
the best match(es) in the other relation.

4.5.1 Similarity Measure

The similarity between two tuples is calculated using some string
matching techniques and true/false checking. The string matching
algorithms used in our project are: edit distance and q-gram algo-
rithm described in section 3. The distance threshold of two matching
records is expressed in a range from 0 (best case) to 100 (worst case).
The distance d between two tuples t1 and t2 is calculated by summing
up the distance of the matching attributes (street name, house num-
ber, name, surname, tax number and birth date) multiplied by their
assigned weight:

d(t1, t2) =
∑

d(aj , bj) ∗ wj (2)

The weights have been choosen empirically. The weight is the impor-
tance of this information for finding correspondent addresses. It is
not easy to find the weights for the attributes, as they can only be
approximated. I have adjusted the weights by evaluating testing data.
The weights are set where the best matches for the testing data are
found. For the single attributes the following algorithms, multiplied
by the weights are used to calculate the distances:
Edit distance algorithm is used to calculate distances where the data
has to follow a defined pattern. It tells how many character changes
have to be performed to get a correspondence. The algorithm is slow
compared to the others used in our execution and it is used for the:

• Tax number with a weight of 23% on the similarity.

Q-gram algorithm is used to determine the distance between data with
no standard pattern or given formats. It gives a distance measure
based on the comparison of the tokens of the compared attributes. It
is fast in its execution and used for:

11



• The surname weighting 15% on the similarity

• The name weighting 15% on the similarity

• The street name weighting 23% on the similarity

True/False statement is used to check if two pieces of data are equal.
It is very fast and used for:

• The birthdate is splitted up into 3 tokens which are the day, the
month and the year. The two records match if the three tokens
match exactly. The three tokens are checked with an equal not
equal procedure weighting 15% on the similarity.

• The house number is checked if it is equal or not equal weighting
8% on the similarity.

Example: Distance measure of two tuples. The distance is calculated
for each attribute multiplied by its weight. The sum of the distances
gives the total distance measure. The distance of the name, surname
and street name are calculated using the Q-gram algorithm. The edit
distance algorithm is applied for the tax number. The birth date and
the house number are checked with true/false statements.

tuple 1 Verdi Stefano 23.12.1943 PRZSTF43T28A952F Via Fago 6

distance 0.0 + 5.4 + 0.0 + 0.0 + 8.2 + 0.0 + = 13.6

weight 15% 15% 15% 23% 23% 8%

tuple 2 Verdi Stefan 23121943 PRZSTF43T28A952F Fago 6

4.5.2 Matching Records on Personal and Address Data

Two records are said to be equal if their personal data and address are
matching. For personal data the surname, name, tax number, birth
date are the matching columns. The address has the street name
and the house number as matching columns. Joining the tables with
standard join techniques (SQL-join) ends up with very poor results,
as only for about 2% of the records an exact matches is found. The
problem hereby is, that some databases do not have a common key,
that could be used as a join attribute. The most common attributes
found in the tables of the databases are the personal and residential
data. So, to get virtually one database, there has to be performed a
join on this attributes. Approximate string matching techniques, by
calculating similarities between the records of the tables, produce a
much better approach. Figure 8 on page 13 shows the pseudo code
of the algorithm that calculates the similarities. It takes 2 relations
and a distance threshold as input. The algorithm searches for each
record in table1 the best (can be one ore more) records in table2. The
similarity of a record is calculated by summing each single similarity

12



function calculateSimilarity(R1, R2, d)

// Input: R1 and R2, data of two tables

// Output: a relation containing the matching records

d: distance threshold

min: minimum achieved distance

S: empty stack of tuples(t1, t2)
M(t1, t2, dist): empty matching relation

for each tuple t1 in R1

for each tuple t2 in R2 do

dist:=sim(t1.taxnumber, t2.taxnumber) * tax-weight +

sim(t1.streetname, t2.streetname) * street-weight +

sim(t1.housenumber, t2.housenumber) * house-weight +

sim(t1.surname, t2.surname) * surname-weight +

sim(t1.name, t2.name) * name-weight +

sim(t1.birthdate, t2.birthdate) * birth-weight +

if dist <= d
if dist < min

min = dist
S.empty()
S.push((t1, t2, dist))

else

S.push((t1, t2, dist))
endif

endif

enfor

M = M ∪ S.popAll()
endfor

return M

Figure 8: Algorithm that calculates the similarities of 2 tables

(tax number, street name, house number, surname, name and birth-
date) multiplied by the assigned weight. The matched records below
or equal the distance threshold limit are put in a stack. The stack
holds only matches which comprising the same similarity value. If
a better match is found, the old stack elements are deleted and the
better match is inserted. The found matches and their similarities
are inserted in a matching table called M. At the end the algorithm
returns the matching relation.

4.5.3 Matching Table

The matching between the 2 tables is done by checking common at-
tributes contained in both tables. The matching table contains three
main parameters that can be used to extract all other data fields
present in the original relations in a second moment. The parameters
are two key values of the records and the similarity between them (see
table 1 on page 14). The similarity is the sum of all deviations of
the specified matching attributes e.g. surname, name, birth date, tax

13



TABLE 1
id tax # name street # ...

MATCHING T 5 smg934s Daniel Viale Druso 3 ...
id1 sim id2 84 rft983k Stefan Via Fago 23 ...
5 4.3 277 174 rpc084f Anna Via Roma 5 ...
84 8.7 732 732 hdm327j Mara Corso Italia 19 ...
174 13.2 928 ... ... ... ... ... ...
732 6.3 43
865 11 153 TABLE 2
932 3.2 635 id tax # name street # ...
1043 12.4 234 43 hdm327j Mara Italia 19 ...
... ... ... 277 smg934s Daniel Druso 3 ...

732 rft983k Stefan Fago 23 ...
928 rpc084f Anna Roma 5 ...
... ... ... ... ... ...

Table 1: Matching Table example: correspondences in 2 tables

number, street name and house number. The matching table is saved
as new relation in the database, so once created, it is possible to access
and extract relevant data of the matching records.

4.5.4 Improving Efficiency

Street names reveal many irregularities, this means a street name can
be written in different forms (e.g. Leonardo Da Vinci, L. da Vinci,
Leonardo da V., L.D. Vinci) because of the spelling mistakes the
different insertion users made. Sometimes these are not mistakes,
the street names can be abbreviated or just reduced in a time-spare
spelling form. This not standardized way of inserting the data causes
inconsistency during the years.

In the case of the registration office and electric power company,
the street names are consistent, which means that one street has
exactly one possible spelling (e.g. Corso Della Libertà). Beside the
cadastre data file has many irregularities in the street names, which
means that one street is written in different ways, or spelling mistakes
were made (e.g. Corso Della Libertà, C.D. Libertà, Corso Della Lib-
erta, Corso Libertà). In the registration office and the electric power
company we can find 304 different street names which is in fact the
complete number of streets we can find in the territorial of the Mu-
nicipality of Bolzano-Bozen. The amount of streets in the cadastre is
equal to 1102, which is equivalent to 3,7 different spellings.

When we have to create the matchings between the two tables
the check of the street similarity is very time consuming. Taking in
consideration that each record in one data file has to be compared

14



Key Similarity value
1 0.13 0.201 0.14 0.432 0.012 0.032 0.23 . . .
2 0.230 0.02 0.201 0.022 0.201 0.310 0.012 . . .
3 0.21 0.072 0.391 0.032 0.324 0.231 0.105 . . .
4 0.402 0.021 0.101 0.052 0.004 0.023 0.210 . . .
5 0.01 0.103 0.031 1.0 0.102 0.074 0.105 . . .
6 0.056 0.082 0.002 0.402 0.205 0.032 0.099 . . .
7 0.063 0.084 0.092 0.063 0.153 0.32 0.032 . . .
8 0.023 0.043 0.320 0.053 0.092 0.207 0.085 . . .
... ... ... ... ... ... ... ... . . .

Key 1 2 3 4 5 6 7 ...

Table 2: Similarity matrix: table1/table2 street similarities

TABLE 1 TABLE 2
Key Value Key Value
3 Santi 1 Corso Della Libertà 6
A. Adige 2 Galleria Vintler 32
Corso Liberta 20 Lungo Adige 94
Della Mendola 83 Piazza Del Grano 132
Lungo Adige 287 Via Alto Adige 203
P.E.Eugenio Di Savoia 307 Via Bassano Del Grappa 213
Passegg. S. Osvaldo 371 Via Tre Santi 224

Table 3: Hash-table maps keys to the streets

with 100.000 records in the other data file. String matching algo-
rithms would require several days of work which is not suitable for
our matching algorithm. A better solution has to be found.

By constructing an m*n matrix containing the similarities of all
the street names the similarities have to be calculated only once. Table
2 on page 15 shows the matrix, where each street name is represented
by a key value and the corresponding similarities.

Each street gets a key in the matrix. This keys are mapped through
a hash-table which maps keys to values. Such mapping is shown in
table 3. Each street name gets an integer number which serves as key
in the similarity matrix. The similarities for each street are calculated
only once at the beginning of the execution of the program. Each time
a similarity is needed, the keys of the streets are extracted from the
hash-table and with this keys the matrix can be indexed on the right
position and the similarity can be extracted without any calculation.

15



5 Implementation

This subsection demonstrates the procedures followed in the realiza-
tion of this project, the main functionalities and details. The im-
plementation of the project required the creation of two standalone
applications. The first one is a command line tool which parses the
data out a text file. The second application takes the data imported
in a database system, detects suspicious data and creates a matching
between three tables.

5.1 Cadastre Data Wrapping

The ”CADASTRE DATA WRAPPING” tool (figure 9 on page 16) is
a program which processes the files (*.fab, *.sog, *.tit) downloadable
from the cadastre department of the provence of Bolzano and Trento
”www.catastobz.it”. This program generates new files following the
structure of this data which is specified on the same site using regular
expressions.

Figure 9: Cadastre Data Wrapping tool

Start the program by typing run.bat and after a white space specify
the path and the name of the input file along with the file extension.
If the input file is in the same directory as the start file just specify the
name of the input file without path. e.g. (run.bat A9521814.fab)
If the input files contain data that can not be handled, an error file
named ”error.txt” is generated. It lists all lines which contain an
error an therefore could not be handled by the CADASTRE DATA
WRAPPING tool. To correct the errors just open the input file and
adjust the specified lines. This tool produces a file with the errors
and additional 5 output files containing the data of 5 different types

16



for the input file *.fab: 1) Immobiliare.fab, 2) Identificativi.fab, 3)
Indirizzo.fab, 4) Comuni.fab, 5) Riserve.fab and 2 output files con-
taining the data of 2 different types for the input file *.sog: 1) Persona
fisica.sog, 2) Persona giuridica.sog. The input file *.tit is already in
an import compatible format. It is scanned for bad line format.

5.2 Data Matching

The main application is the cadastre, registration office and electrical
power company matching tool. It reads data from a MySql database,
cleans it and searches matches in all three tables. The first step is to
load the data from the MySql database. Three buttons for the loading
of the data are placed in the start panel (see figure 10). You have to
load the tables by specifying some basic loading parameters, such as
database-name, host and port, table name, column names, username
and password. After the data is loaded the button changes its text
to ”clean data (x)”. The button can be pushed again to specify the
parameters for the data cleaning (see figure 10).

Figure 10: ”Data Matching” GUI and ”Clean Data” dialog

The Clean Data dialog contains checkboxes that allow the speci-
fication of the columns that should be controlled and checked. Basic
errors like a whitespace is directly changed in the MySql table by the
programm. Other suspicious data regarding surname, name, tax num-
ber, birth date, street name or house number is written out in a text
file. The user can open the file and through the identification number
and the fault of each record it is possible to correct the data manually.

Example error log file:

suspected tax number in table cadastre
387 LTRPTR23E21E959

17



1043 FRFHDC12TE5T952D
- - - END - - - number of rows 2

suspected house number in table table cadastre
8231 51@53
8679 51F
39425 7.
74099 4@12
- - - END - - - number of rows 4

suspected birthdate in table table cadastre
3987 2105192
6234 30.5.1947
- - - END - - - number of rows 2

When the data is cleaned it is ready to be matched. When the button
”apply matching” is pushed a new dialog appears. The boundary
deviation value specifies which similarity limit we want to apply for
the matching, 0 specifies the best matching value, 100 is the worst case.
We can also input the value at which record the matching should start
and at which record it should stop (see figure 11 on page 18). This can
be an advantage, because on old or slow computers the calculation can
take much time. After the specification of this values the matching
starts.

Figure 11: Dialog for specifying the matching details

The tool tries to find for the first record the best matching record
in the registration office. The similarity is calculated on two deci-
mals exactness. If more than 1 record was found for one record in the
cadastre the results are saved in an array and recognized as matching
records. The generated matching table inserts more new matching
records. For the matching records on the registration office side cor-
respondences are searched in the electrical power company table. The
matching parameters for the same matching algorithms are the tax
number, street name and house number. Only this three fields can be
used because they are the only common columns for the two tables.

18



A status line informs the user about the records that come up and the
similarity values.

The values are written in a MySql table for further usage, while
the user can see the results by pushing the ”Show Matches button”
in the main GUI (Graphical User Interface). A table containing all
the matching details and parameters give the user the opportunity to
check the obtained results just after the matching procedure (see figure
12 on page 19). The table shows also the matching data (surname,
name, street name...) for a better visualization of the matches.

Figure 12: Possible matches produced by the application

5.3 Java Implementation

The applications developed for this project are java applications. For
writing the code I used the Eclipse Platform. We have choosen these
technologies, because they are open source and run on every machine.
The first application which is the cadastre data wrapping tool is a
command line tool an it contains 2 classes and about 300 lines of code.
A code example that splits the file depending on the content of each
line using regular expressions is shown in figure 13 on page 20. The
second tool, the data matching tool is a java application. This tool
creates a connection to a MySql database, using the jdbc drivers. This
tool contains 18 classes which are structured in 6 packages and contain
about 4000 lines of code. The java code example of the matching
algorithm is shown in figure 14 on page 21. We use the MySql version
4.1 adapted to support nested queries, that where very useful to get
an insight on the data received by the departments of the Municipality
and to get a better overview of the domain.

19



//splits the lines of type PROPERTY (*.fab)

public void arcImmobili()throws IOException{
DataExtraction de = new DataExtraction("immobili");

int lineNum = 0;

String matchLine;
String standardPat = "A952//|//|[0− 9]{1, 9}//|F//|[0− 9]{1, 3}//|";
for (int u = 1; u < 6; u + +) {

pat[u] = Pattern.compile(standardPat + u + "//|.∗");
}
while ((matchLine = in.readLine()) != null) {

lineNum + +;

for (int u = 1; u < 6; u + +) {
mat[u] = pat[u].matcher(matchLine);

}
if (mat[1].matches()) {

de.landedProperty(matchLine, count);

} else if (mat[2].matches()) {
de.keyData(matchLine, count);

} else if (mat[3].matches()) {
de.address(matchLine, count);

} else if (mat[4].matches()) {
de.combGoods(matchLine, count);

} else if (mat[5].matches()) {
de.landedProperty(matchLine, count);

} else {
de.writeError(("unresline” + lineNum + matchLine));
DataExtraction.isError = true;

DataExtraction.numErrors++;

}
}

}

Figure 13: Java code that splits a file using regular expressions

20



//limit: distance threshold

//rs1, rs2: the MySql reslutset of to relations

public void computeSimilarity(float limit, Resultset rs1, Resultset rs2){
while(rs1.next()){

while(rs2.next()){
//compute similarity for the 6 matching attributes

for(int i = 0; i < 6; i + +){
if(rs1.getString(i) == ””rs2.getString(i) == ””)

sim=0;

else{
//distance algorithms

sim =+ editDist(rs2.getString(i),rs1.getString(i))*Weight;

sim =+ q-gram(rs2.getString(i),rs1.getString(i))*Weight;

sim =+ true/false(rs2.getString(i),rs1.getString(i))*Weight;

totalWeight = +simWeight;
}

}
sim = /totalWeight;
if(sim <= reachedSim){

if(reachedSim == sim){
equalSim++;

eSe[equalSim] = new double[]{rs2.getString(id2),
sim, rs1.getString(id1)};

}
else{

equalSim=0;

eSe[equalSim] = new double[]{rs2.getString(id2),
sim, rs1.getString(id1)};

}
reachedSim = sim;

}
}
if(reachedSim <= limit){

for(int z = 0; z <= equalSim; z + +){
//only elements with lowest similarity

if(eSe[z][8] == reachedSim)

insertTable("insert into match table values +

(’"+eSe[z][1]+"’,’"+eSe[z][1]+"’,’"+eSe[z][2]+"’);");

}
}
rs2.first();

}
}

Figure 14: Java code of the matching algorithm

21



6 Evaluation

In this subsection I evaluate the final result founded by applying differ-
ent string matching algorithms on the records of the different tables.
The similarity of two matched records has a range from [0 to 100],
whereas 0 is the best case said two records match exact and 100 is the
worst case where each of the matching attributes has no similarity.

6.1 Match Cadastre - Registration Office Data

We want to find the correspondent matches in our cadastre relation
(112.000 insertions) and the registration office (97.000 insertions). The
application takes about 50 hours (≈ 2 days) to calculate the correspon-
dences in the tables. For each record in the first table the similarity for
all records in the second table have to be calculated (112.000*97.000).
Figure 15 on page 23 shows the distribution of the similarities of the
matching records. The approximate matching is done using personal
data (surname, name, birth date and tax number) and residential data
(street name and house number). This data fields are present in both
of the matched relations. It shows the matches found in the regis-
tration office relation for 5000 records of the cadastre relation. The
experiment shows an irregular distribution of the similarities.

[0-10 ] 34% of the matches

[10-20 ] 23% of the matches

[20-30 ] 10% of the matches

[30-100 ] 33% of the matches

This is due to the fact that the relations hold many data with many
irregularities. The algorithm is able to find about 2% of exact matches.
This means that about 2000 records have a 1:1 correspondence. The
other records are possible matches and have to be evaluated. The peak
reached nearby the deviation value equal to 10 is very probable to be
a match with some irregularity in the street name. The registration
office relation holds only the 304 valid street names in the Municipality
of Bolzano-Bozen (e.g. Viale Druso, Via Maso Della Pieve...), where
the cadastre follows no rules by inserting the street names (e.g. Viale
Druso, V. Druso, Via M.D.Pieve, V. Maso Della Pieve, Via Maso
D.Pieve...). The big deviation of the matches is due to the 1103
street names of the cadastre compared with the 304 of the registration
office. An other common error is the spelling of the names (e.g. Stefan-
Stefano, Karl-Carlo...).

22



Figure 15: Cadastre - Registration Office similarities

6.2 Match Registration Office - Electric Power
Company Data

We want to find the correspondent matches in our registration office
relation (97.000 insertions) and the electric power company (50.000
insertions). The application takes about 30 hours (≈ 1,25 days) to
calculate the correspondences in the tables. For each record in the
first table the similarity for all records in the second table have to be
calculated (97.000*50.000). Figure 16 on page 24 shows the distri-
bution of the similarities of the matching records. The approximate
matching is done using personal data present in both tables which is
the tax number and residential data street name and the house num-
ber. This data fields are present in both of the matched relations. The
experiment shows an irregular distribution of the similarities.

[0 ] 42% of the matches

[1-15 ] 9% of the matches

[15-30 ] 21% of the matches

[30-40 ] 28% of the matches

This is due to the fact that the relations have only three common
matching attributes and therefore there is no possibility to find good
distance measures for the correspondent records. We find about 42%
exact matches. This means that we find 40.000 correspondent records

23



Figure 16: Registration Office - Electric Company similarities

of the total 97.000 present in the registration office database. All
other records are possible matches and have to be evaluated. A peak
of 14% is reached for similarity equal 19 and 24% of the matches
reach a similarity of 33. This is due to the fact that some matching
attributes are missed. This reached peaks arise because some records
miss the tax number and therefore we can calculate the similarity only
with respect to the street name and house number. By knowing only
the house number and street name as residential data we are not able
do find good matches.

6.3 Accuracy

Matches are found for all the records. We want to know how good
the matches are and what the boundary similarity limit for correct
matches is. For doing this we pick up randomly choosen matches and
control their exactness. The similarity range goes from 0 to 100, where
0 are exact equal records. It is not easy to estimate the limit value for
”good” matches. Sometimes a deviation value which holds a ”good”
match, shows no correspondence for the same deviation value. The
testing on the cadastre - registration office matches, is done using 50
randomly choosen records. By controlling each deviation value and
comparing their records, the boundary value which shows an admissi-
ble deviation of the records is 17. We are only able to estimate a value

24



which can be seen as a good approximation for valid matches. This
value is not easy to determine, because of the only manual possibility
of determination. Only about 0.05% of records is taken in consider-
ation for the testing (of 100.000 matching records we test only 50).
In some cases we get a good match also with similarity value equal
30, in some cases a similarity value of 10 gives a bad match. The
value 17 is a median number which was determined by the testing.
49% of the matched records have a similarity below the 17 limit. This
should mean that we found 50.000 good matches for the cadastre re-
lation, compared with the 2.000 matches found by applying standard
MySql joins. The registration office - electric power company matches
demonstrate 42% of exact matches compared with the 3% found us-
ing the standard joining techniques. All other matches have to be
evaluated in detail, because only 3 matching attributes are taken in
consideration.

7 Conclusion and Further Work

Different information about the citizens are used by the Municipal-
ity of Bolzano-Bozen. For some administrative tasks the data inside
these heterogeneous and autonomous databases of the cadastre, reg-
istration office and the electric power company are joined. Applying
standard joining techniques ends up with poor results, as there are
no common keys. The data shows irregularities because of spelling
mistakes, abbreviations and different naming conventions in the data
fields. This work proposes a technical solution for this problem. A dis-
tance measure on common attributes of the databases, the addresses
and the personal data. This measure is used to approximately join
tuples coming from different databases. I have developed two tools,
for applying the approximate string matching algorithms on the data.
The Data Wrapping Tool is used to parse the cadastre text files and
split them according to their content. The Data Matching tool is used
to match the records with address and residential data. Further work
for the project is a more dynamic design to support more data for-
mats. The execution time to match the records can be improved and
optimized in further projects.

Acknowledgments
I wish to thank my supervisor Prof. Johann Gamper and my sec-
ond supervisor Nikolaus Augsten for supporting and coordinating my
work, as well as SIT (Sistema Informativo Territoriale) at the Munic-
ipality of Bolzano-Bozen for the collaboration.

25



References

[1] Reducing the integration of public administration databases to
approximate tree matching. Nikolaus Augsten, Michael Böhlen,
and Johann Gamper. In proceedings of the Third International
Conference on Electronic Government, 2004.

[2] H. V. Jagadish Nick Koudas S. Muthukrishnan Luis Gravano,
Panagiotis G. Ipeirotis and Divesh Srivastava. Approximate string
joins in a database (almost) for free. In Proceedings of the 27th
International Conference on Very Large Data Bases. Morgan Kauf-
mann Publishers Inc., 2001.

[3] Using approximate string matching techniques to join street names
of residential addresses. Roland Innerhofer-Oberperfler. Bachelor
of Science in Applied Computer Science.

[4] E. Sutinen and J. Tarhio. On using q-gram locations in approx-
imate string matching. Proceedings of Third Annual European
Symposium, 1995.

26


