[image: image3.png]FREIE UNIVERSITAT BOZEN
LIBERA UNIVERSITA DI BOLZANO

FREE UNIVERSITY OF BOZEN - BOLZANO






Web Services in e-Government

My internship experience at the municipality of Bolzano

Written by Martin Meraner

University tutor Johann Gamper

Company tutor Walter Costanzi

Friday, 12 December 2003

Table of contents


21
Detailed description of the content of the internship project


21.1
Context


21.2
The Protocol Service


31.3
Objectives


31.4
Realization of the Protocol service using Web service technology


42
Achieved aims


42.1
Overview about the state of the art in Web services


52.1.1
General Overview


52.1.2
Web Service Technologies


62.2
Implementation of the Protocol Service


82.2.1
Implementation of a directory service


92.3
Comparison between different technologies for Web services


93
Description of the intersection of theoretical knowledge and the activities carried out in the internship


104
Description of difficulties during the internship




1 Detailed description of the content of the internship project


[image: image1.emf]Central

web server

Intranet web page

delivering protocol

number

Workflow system

(WebService integration)

SQL

Client test application

consuming web

service

MS Office application

Registers

service

Intranet

back-end

Intranet

front-end

Internet

(introduced for later appliances)

Extranet

Workflow system

interface - webpage

Protocol server

Protocol number

delivery through

query

Oracle

Database

UDDI

offers business

information and

service information

Workstation

acting as registry server

Web / Application

server service

Internal

Web / Application server

WebService

HTML generating

servlet calling the

underlaying

WebService

Workstations running

MS Office XP

Office document


Figure 1: Shows the originally planned conceptual architecture of the implementation of Web Services at the municipality
1.1 Context

The Free University of Bolzano currently runs a co-operation with the municipality of Bolzano. In order to provide a better access to the information of the public administration the cooperation "eBZ - digital city" was founded. The aim of this cooperation is the transfer of information about new technologies and the transfer of results about research projects.
In the framework of this initiative I got this internship task such that I can contribute to the research activities in the area of Web Services and how they might influence the e-Government in the future. I was working at the municipality of Bolzano on the topic “Web Services in E-Government”.

1.2 The Protocol Service
One problem that was found to be unresolved and dramatically slowed down the business processes is the retrieval of a protocol number within the daily governmental activities. Since this task was performed manually, it needs a lot of time to be executed.
The task of retrieving a protocol number originates from the need to have every postal or electronical request toward the municipality registered. Also every internal response to outside requests needs to be logged in this manner. In order to identify such a request, a unique number is associated to each of these documents coming in or going out.
At that time (and unfortunately also now) the protocol number needs to be generated manually by launching the client application. To make use of the protocol number it needs to be cut from the protocol number generating client and paste into the custom processing program. The only inconvenience that cannot be eliminated is that physical documents still suffer the overhead of putting a protocol number manually on each postal mail item that is coming in and cannot be avoided (until it will be executed electronically), but the significant overhead in producing official documents within the municipality and creating a protocol number can be reduced.
This protocol number retrieval is normally done with an application developed by an external company, which made the task more difficult. This added a personal objective to the internship, namley to provide base knowledge and an example implementation of Web Service technology to this company. The company easily could use this experience for their product, in order to implicitly add Web Service technology within the municipality and therefore exploit the clear advantages of it.

1.3 Objectives

The main goals of the internship were:

1. Study the state of the art of Web service technology

2. Implement and test a Web Service for the protocol service of the Municipality of Bozen-Bolzano

3. Comparison and evaluation of different technologies and implementations
1.4 Realization of the Protocol service using Web service technology

Initially there was even the thought to exploit a system library delivered by the application. This required studying JNI for Java and in the end was not used, since the database access could be performed without it by using a stored procedure delivered by the application vendor company. In addition to this service implementation it was required that this service is also registered in a directory service. With this the municipality is guaranteed to have the knowledge on how to make public a service implementation in a public repository of services or even establish one by itself. 

UDDI was chosen as the technology for the directory service, since this is the standard for such discovery. It is at the top level of the Web Service architecture. It is intended also to reflect the organisation of a company and serves really the purpose to represent a list of compelete application services.

After having established this framework of service requestor, service provider and directory service, there was the task to create a dynamic client. With the expression “dynamic client” we intend a client that searches a UDDI registry in order to discover a certain service that one is looking for. Having found such an entry the dynamic client goes to the service provider and requests the WSDL file in order to create out of the interface an implementation of the service. Once found such a service, it is implemented and invoked with the parameters passed to the dynamic client.

A last task is to implement a security feature into the web service of the protocol number retrieval, which is an interesting task since it should work for both of the two implementations, .NET and Java. With this I described the basic tasks of my internship at the municipality of Bolzano. In every moment of the internship in the very foreground stood the acquisition of knowledge, for both, the municipality and myself.
2 Achieved aims


[image: image2.emf]Intranet web page

delivering protocol

number

SQL

Client test application

consuming web

service

Invokes WebService

Registers

service

Intranet

back-end

Intranet

front-end

HTML

Protocol server

Protocol number

delivery through

query

Oracle

Database

UDDI

offers business

information and

service information

Workstation

acting as registry server

Web / Application

server service

Internal

Web / Application server

WebService

HTML generating

servlet calling the

underlaying

WebService

Dynamic client

Retrieves service location

Implements

description

and

invokes


Figure 2: Shows the results of the development of the protocol number web service
At the end of the internship the following results can be shown: 

2.1 Overview about the state of the art in Web services

So a very important and also time consuming part of the internship was to learn all about web services, which is a rather difficult task, since there are lots of standards and even more implementations of them. It was very crucial to extract from all the detailed information a general overview and to systematically recover and put together information.

2.1.1 General Overview

Web services enable easy and secure application to application communication. In order to fully exploit this new technology and the resulting advantages, a clear understanding of the concepts lying behind is necessary. Web services offer possibilities not only to provide new services to applications and end-users, but also can be used to solve existing interoperability problems between systems. Especially the feature of using an XML-based format overcomes limitations that were posed to binary transmission, such as firewalls. The appliance of this new technology is not only restricted to business applications, but also is interesting for governmental services and for problems related to the technology currently in use.
The complete interoperability of Web Services can be seen as a result of the effort in producing a minimal standard out of existing technologies. These standards basically provide a very high level abstraction that is able to make communicate different systems. XML surely is the biggest building block of it, but as we can obviously see, not all of the features and capabilities of XML were used in the now well established Web Services architecture. Starting developing the core features and keeping their development as free and as open as possible was one of the key success factors.

Furthermore, another very important fact to point out is that Web Services didn’t require the development of new technologies, but was conceptually built to support as many as possible preexisting technologies such as for transmission not only the widespread TCP/IP protocol is supported, but also protocols like SMTP, FTP and RMI can be exploited. This fact can be summarized by the statement that any protocol can be used for transmission as long as it is capable of sending and receiving XML data. Web Services are in many aspects relatively technology neutral.

From the point of view of the developer Web Service technology offers another amazing advantage: it makes different pieces of software reusable. This comes from the fact that standards are open and nowadays implemented in lots of programming languages and their supporting frameworks. Existing software can be exposed as Web Service by writing wrappers around them. This procedure is comparable with the technique of dividing an application following the model-view-controller paradigm, considering the view not just as human interface but rather as application interface. One might argue that existing middleware like CORBA can perform the same tasks, but we should keep in mind that CORBA was not and is not used very often, since it has obvious problems like not being an open standard, but rather a legacy system, it can not pass easily through firewalls, the integration is difficult and time consuming.

2.1.2 Web Service Technologies

When planning to implement web services one must be aware of the elements that constitute such an infrastructure to enable to and build web services. First of all usually there is made the distinction of three basic types of needed components and categories of distinction between various products.
· Server: We classify as “Server” any solution that provides all the features needed to call, create and host web services. It should include libraries to call Web services using WSDL and also low-level programming. It should also include features to host web services: SOAP/HTTP listener. A Server has to be a complete solution that doesn't require any additional components.

· Framework: We use “Framework” to refer to solutions that provide features for calling and creating web services. A framework usually requires a server infrastructure to be able to deliver web services. A framework is made of a set of libraries or components that speeds up the process of building/calling web services.

· IDE (Integrated development environment): “IDE” is used for solutions that provide tools for the developer to call and create web services. An IDE typically provides wizards to generate code, tools for WSDL generation, service mapping to existing resources, debugging features. The main goals of an IDE are to improve productivity at the design and development stages as well as in testing and debugging.

In order to enable web services it is crucial to have a web service container that allows access to the web service. Such containers in most of the cases are web servers that transmit data over the HTTP protocol, since it is the most widespread method to provide text streams (like SOAP documents). Even though other protocols such as JMS, SMTP and FTP are supported and are supposed to provide flexibility on how data is transmitted. All of these containers provide primarily text or binary based data. The crucial point here is the engine that provides the XML (SOAP) messages. Most times when using a HTTP web server as transportation mean, servlet engines are used to provide messages in the case of Java web servers and the ASP engines comes to use in the case of Microsoft web servers. This means that the second part of the requirements is an engine that provides the web service messages. Furthermore most of these engines support the capability of providing a dynamically generated or static WSDL file that describes the interface to the web service. Also this is an important requirement when planning to implement a web service. The final requirement in providing web services is that an underlying framework must be provided. This means the choice of implementation of standards such as SOAP, WSDL, and XML. The framework usually also provides tools and sample constructs on how the developer is supposed to create the web service.

2.2 Implementation of the Protocol Service

The first aim was to implement the protocol service at the municipality of Bolzano with Web Service technology. It was done by using Java technology as well as .NET technology. The implementations were written simultaneously taking advantage of the having at the end the same structure of the service and comparable implementations.

For the implementation of the web service in Java the decision was taken to use Apache Axis as framework for the web service generation. The clear advantage of Axis is that one does not have to handle with huge amount of work of generating the service side servlets that have to provide the web service. Axis simply parses the .jws file that is put into a specified directory and constructs a web service (based on HTTP, RPC style, simple data types). To clarify the file extension “jws” the following can be said: it is just a normal text file with java code in it. It is parsed and compiled by the axis framework in order to expose it as a web service. It is required that the code is in the default namespace of Java. Any function inside this file is exposed as single web service within a WSDL description file for this specific file. For further, more sophisticated use AXIS offers the possibility to use a so called .wsdd file (Web Service Deployment Descriptor), typically represented in the standard XML format. With such a file the event chains can be modified and adapted to the required sequence of actions. The selection on where to put in the Apache Axis framework was rather simple, since the emphasis of this project was to be conforming to standards and show a reference implementation. 
Having taken the decision on the framework to use the next choice was the web server. The JWSDP Toolkit not only offered the requirements mentioned in the end of the previous paragraph but also additional features like the UDDI server. Furthermore with its built-in web application container Apache Tomcat version 5 it seemed to be the best choice for a relatively small project. There was basically one important problem that needs to be stated. It is no problem to put in the axis servlet within the Tomcat container, but the fact that AXIS needs some libraries at load time to offer the web service capabilities was. The problem is that not all of the packages delivered through AXIS work well with the JWSDP Tomcat server. Basically there is a jar file for the SOAP with Attachments feature that is not compliant with the registry server libraries of JWSDP. Whenever Axis was installed on the machine, the registry browser of JWSDP failed to connect to the not properly working registry server. Carefully choosing the packages to install, this problem could be solved.
As IDE for development the Eclipse platform version 2.1 with a WSDL2JAVA plugin was chosen. Furthermore to the Apache Axis framework, the WSDL4J library was used to parse the WSDL files.

With these fundamental building blocks I began to develop the web service. The development was driven by an object oriented approach with agile methodologies adapted to the size of the project. The project was basically divided into three building blocks:

· the database access and conversion to objects (database access with a native JDBC driver provided by Oracle)

· the business logic level that deals with the objects

· the repesentation level that is the exposure of methods as web services

As described previously the same was done with .NET technology. Only the IIS server integrated within the Windows XP Professional licence could satisfy the requirement of being a free web server for these testing purposes. It ran rather stable, but there were some difficulties in handling the permissions on the remote server. One basic difference to the Java web server is that Web Services in .NET is ready enabled by the .NET framework and the ASP engine within the IIS. There is a unique way to implement Web Services with .NET technology. My idea was to develop on the remote server over a client machine avoiding to have to install Visual Studio .NET innecessarily on the server, therefore avoiding license problems. 
The IDE for this task obviously was Visual Studio .NET which eases the task of building different web service based applications. Another noteworthy detail is that the server side web service was written in Visual Basic .NET whose syntax is really intuitive and easy for the devoloper. Even though VB .NET faces many critics there should be cited that the .NET framework is especially known for its language-independence. That means that developers who know Visual Basic won’t have problems in fully exploit the .NET framework. 

The project was divided into the same building blocks as in Java with the difference that there was used an ODBC connection to the Oracle database.

On both servers I implemented a web page that accesses a customly created stub (a pre-compiled version of the client that consumes the web service) of the protocol web service. The sites call the web service with the seven parameters and get back a unique protocol number. I gained an insight in the development speed of the two particular technologies, Java and .NET, and how easy or difficult it can be to develop in little time such pages. Furthermore I was required to provide not only access to the protocol service but also to show how to access other relevant information that the protocol service needs. These are for example a set of entries to choose from used as input values for certain parameters. This set of entries was e. g. prefetched by the website and offered as valid input for the web service. This showed one major lack of the current web services. In order to give such parameters choices we have to build another web service. The XML technologies employed at the time being now is not capable of representing such data in it (possibly it could be put in the WSDL file).

Having established the protocol services with different technologies obviously I had to implement some application clients for them, not only web pages. In order to show the interoperability of Web Service technology the application clients were able to either invoke the .NET version or the Java version. Even though it was necessary to create custom stubs for the two services it showed up that the implementation of the service is completely independent from the unified providal of the information. I realized later on that even one stub with changing location information would have been sufficient.

2.2.1 Implementation of a directory service

Another task was to set up a directory service. In the future the municipality of Bolzano will develop more and more web services if this initial phase of introduction to this technology will be successful. In order to get rid of all the services that will be offered by the various departments of the municipality there is the need of a central point of reference for discovery and registration of these services. To also provide this service there a few possibilities like a UDDI registry, ebXML registry ... Since UDDI is the most popular, widespread and flexible technology with respect to Web Services we decided to implement a UDDI compliant registry for discovery. An article I worked through also describes how to use a UDDI registry to make available ebXML registry discovery, for example. The UDDI registry later on can be used by the developers at the municipality of Bolzano or by other interested third parties to explore the services offered and orchestrate them to implement new work flows or services. The registry also serves the purpose not only to be human readable, but also to be a computer readable index of services. This two-foldness is very important, since the aim is not only to digitally enable the service discovery, but currently expose information to humans. Another very important and exemplary usage of this registry will be the impact on the dynamic invocation of the protocol number web service. This dynamic client will be able to process the results retrieved from the UDDI registry and dynamically bind those to a real protocol number invocation. Due to the lack of time the semantic interpretation of this received data is skipped and an alternative solution like string comparison is used. The dynamic client shows the whole potential of Web Services by going through all the basic steps a service oriented architecture shows, namely querying the location of the description of a service on a directory service, parse or bind the this information retrieved in order to create an implementation of the service and finally invoke the service.

2.3 Comparison between different technologies for Web services

Another important goal that was achieved is to work out the differences between the Java technology and the .NET technology in the environment of the municipality of Bolzano. 

A not work-specific aim was also to bring the municipality of Bolzano the opportunity to get a student, to which they could refer in terms of technologies they didn’t knew. I could provide some information on the .NET technology and the ease of programming with Visual Studio .NET. Furthermore they were very interested in how to set up an IIS server in Windows and make it run ASP.NET having only at disposition WindowsXP Professional. Also there was interest to see what online free tools for Microsoft or by Microsoft can be used, e. g. the .NET Runtime Redistributable enables the IIS to be used as free ASP.NET server using a ASP.NET editor.

3 Description of the intersection of theoretical knowledge and the activities carried out in the internship

Especially in the initial phase of the internship, when it was also planned to do the long internship on this topic I got the chance to read lots of articles and white papers on Web Services and e-Government, since my preliminary knowledge about was very, very low. It was challenging to find out myself what I needed in order to be able to develop the Web Service and be able to also provide technological advices to the municipality. 

Especially since the Web Service technology is not fully standardised in all its features like security that plays a vital role in governmental tasks. I got into problems like the semantic interpretation of data, e. g. in the UDDI registry or WSDL description, since the computer needs exactly to know what parameters to pass and what their meaning is. There are lots of efforts in bringing together the sematic web and the web services. I got profound insight into technologies and architecture of Web Services, especially for UDDI, WSDL, SOAP, WSIL, ebXML. Furthermore I had the task to seek for implementations of those technologies and get a ranking according to certain criteria. 

I learnt how to conceptually model a task, and analyse it from an abstract view. Another highly important skill that I acquired was that I learned how to read and extract important data from technical papers.

There are obvious intersections with lectures I was able to follow before, but heavily in this semester I can thake an advantage of the knowledge I gather with the internship at the municipality of Bolzano. 

· Beginning from the backend of the Web Service I developed there is a Oracle database which I needed to analyse and interface with Java and .NET. The database course provided a really good base knowlegde in order not only to see that the real databases are structured very badly and there are lots of security leaks, but also was fundemantal in order to exploit the features of a well written database interface (in ODBC and JDBC as well as Oracle’s native drivers). I really don’t blame the municipality for the data structure within the database, since most of the times it is the guilty of the application provider that require the municipality just to offer them the database and they install their specific relations.
· Furthermore the course “DataCommunication” was very useful since we not only learned how connections are established between client and server, but also learnt some programming skills that I could apply in my work.

· Another important point was the “Software Engineering” course which in itself didn’t gave me much, but I got the unique opportunity to learn lots of things about Web Services, web servers … from my collegue Bernd Waldboth.

· During the summer I also studied for “Internet technologies I” and it helped me to gather deeper understand on how the internet works and how to play with new technologies and to see the technology also under the perspective of semantics for computers.

· At the time I really feel the influence of the internship at the courses “Internet technologies II”, where I already know lots of the concepts and practises that are thought. Furthermore it was very useful to see how difficult it is to build a web application on my own. There was heavy impact of agile methodologies and project management. 

· Also I got the chance to see how business information systems in government is used, since the employees there were very kind and showed me many interesting things on how business process execution can be speed up. 

4 Description of difficulties during the internship

The first problem I personally encountered was to create a scientific way of doing research on a new technology. This problem that I had to learn it by myself without guidance how to work in a structured manner led to a bigger time loss. Furthermore I had to get used to different systems like Latex and so on. The sheer amount of data that was at my disposal was difficult to structure and organize well in order to efficiently gain information out of it.

The protocol web service developed couldn't be used immediately as problem solution since there were a few unknown factors behind the scenes. The stored procedure that should perform the protocol number generation only performs a small part of the protocol number generation process and neglects some other data that the application could insert and retrieve at the client side. This means that either the company delivering the product, changes their whole system or the implementation that was done in web services has only some very specific purposes. Such a purpose was proposed by an assistant of the Free University of Bolzano, which namely was to use the system for automatic protocol number generation of ingoing email traffic. Here the system that potentially will use the web service is aware of the inputs it has to specify and can perfectly work with this solution. On the one hand this has the clear advantage that the client side can be written in any programming language that supports web service invocation. On the other hand, a specific purpose solution is faster, less network traffic intensive, less computationally intensive and more easily securable. 

Another difficulty arose with the implementation of the UDDI registry service of the JWSDP 1.2. Whenever I installed the Axis framework onto the Tomcat web server I could not any more launch the registry server. I really spent lots of time in finding out that a library of Axis went in conflict with a library in the web server. With such difficulties I lost a lot of time, but it was really instructive for me.

The dynamic client in the end was only applicable to a limited configuration of the web services and was not ready to use. Since there were three parameters I haven’t realised before this part of the project remained uncompleted. To explain it in more detail: the dynamic client that was developed is not fully dynamic, as the original intent was. There are three parameters in the WSDL file that can alternatively be changed in order to disable the program. With some changes this could be implemented. The three parameters consisted e.g. of the namespace definition of the function that delivered the protocol number. Another argument to mention (but I really don’t consider it as a problem) was that I spent most of the time with making running and compatible the information about the database in form of the stored procedure. The SQL syntax I had to use in order to make the call was rather different using Java and .NET (respectively JDBC and ODBC). We encountered also some performance problems. Lots of time was used to establish a connection to the database and to call the stored procedure. I could save time performing input checks at the application rather than at the database side. 

Last point to mention is that I found it a bit difficult to develop with technologies which were completely unknown to the staff that I was working with at the municipality. 

In conclusion can be said that it was chance to learn for both parties and so we did. In the end the web service was developed and can be used with minor changes according to the requirements. Lots of information was produced and I could gain an insight into governmental information technology development. An experience I will take advantage of for the future.

Ausbildungs- und Orientierungspraktikum


[image: image4.png]FREIE UNIVERSITAT BOZEN
LIBERA UNIVERSITA DI BOLZANO

FREE UNIVERSITY OF BOZEN - BOLZANO




_1132233713.vsd
Workstation�

�

��

�

�

Data�

Protocol server�

Internal 
Web / Application server�

Dynamic client�

Retrieves service location�

Implements
description
and
invokes�

Intranet web page
delivering protocol
number�

HTML generating servlet calling the underlaying WebService�

Invokes WebService�

Client test application consuming web service�

WebService�

SQL�

Protocol number delivery through query�

�

Web / Application server service�

Workstation
acting as registry server�

Registers 
service�

Intranet
back-end�

Intranet
front-end�

HTML�

UDDI
offers business
information and
service information�

Oracle 
Database �


_1132233775.vsd
Workstation�

�

�

Server�

Information Systems�

��

�

�

Workstations�

�

�

�

�

�

�

Data�

Protocol server�

Internal 
Web / Application server�

Central
web server�

Intranet web page
delivering protocol
number�

Workflow system
(WebService integration)�

HTML generating servlet calling the underlaying WebService�

�

Client test application consuming web service�

WebService�

SQL�

Protocol number delivery through query�

�

�

Web / Application server service�

Workstations running 
MS Office XP�

MS Office application�

Office document�

�

Workstation
acting as registry server�

Registers 
service�

�

Intranet
back-end�

Intranet
front-end�

Internet
(introduced for later appliances)�

Extranet�

Workflow system
interface - webpage�

�

UDDI
offers business
information and
service information�

Oracle 
Database �


_1112611054.bin

