
Determining Objects within Isochrones in
Spatial Network Databases

Sarunas Marciuska and Johann Gamper

Free University of Bolzano-Bozen, Italy
{gamper,marciuska}@inf.unibz.it

Abstract. Isochrones are generally defined as the set of all space points
from which a query point can be reached in a given timespan, and they
are used in urban planning to conduct reachability and coverage ana-
lyzes in a city. In a spatial network representing the street network, an
isochrone is represented as a subgraph of the street network. Such a
network representation is not always sufficient to determine all objects
within an isochrone, since objects are not only on the network but might
be in the immediate vicinity of links (e.g., houses along a street). Thus,
the spatial area covered by an isochrone needs to be considered.
In this paper we present two algorithms for determining all objects that
are within an isochrone. The main idea is to first transform an isochrone
network into an isochrone area, which is then intersected with the ob-
jects. The first approach constructs a spatial buffer around each edge in
the isochrone network, yielding an area that might contain holes. The
second approach creates a single area that is delimited by a polygon
composed of the outermost edges of the isochrone network. In an empir-
ical evaluation using real-world data we compare the two solutions with
a precise yet expensive baseline algorithm. The results demonstrate the
efficiency and high accuracy of our solutions.

1 Introduction

Urban planning has to deal with tasks such as to analyze the reachability of
strategic objects in a city and to place these objects in optimal positions. For
example, what is the best place to build a metro station or a school such that a
large number of people can reach that place in comfortable times?

Isochrones, which are defined as the set of all space points from which a query
point can be reached in a given timespan, are used as an instrument to perform
such analyses. By joining an isochrone with the inhabitants database the number
of citizens living in a certain distance from a query point can be determined.
Figure 1(a) shows the 5 minutes isochrone for a single query location (star) in
the city of Bozen-Bolzano. The isochrone is represented by the street segments in
bold and covers all points in the street network from where the query point can
be reached in 5 minutes, assuming a walking speed of 1.6 m/s and considering
walking as the only mode of transportation. In general, the computation of
isochrones needs to consider multiple modes of transportation, e.g., walking, bus,

2

train, metro, etc. An isochrone is then a possibly disconnected set of space points:
a large area around the query point and smaller areas around bus/metro/train
stops, from where the query point can be reached by a combination of walking
and using public transportation. For the sake of simplicity, in this paper we
consider mainly isochrones in a pedestrian network (walking mode only). The
proposed solutions can easily be extended for multiple modes of transportation,
as we briefly discuss in Sec. 4.

(a) Isochrone Network (b) Isochrone Area

Fig. 1. Isochrone Representation as Network and Area.

The representation of isochrones as a subgraph of the street network is not
always sufficient. A representation as an area, such as illustrated in Fig. 1(b), is
often desirable for several reasons. First, the objects within an isochrone we are
looking for might not lie exactly on the network but in the immediate vicinity
of links, e.g., houses in a street have usually a distance of up to 50 meters or
more from the street. In Fig. 1 such objects are represented as dots. With a rep-
resentation as an area, it is straightforward to determine all (static or dynamic)
objects within an isochrone. Second, for human users isochrones are usually vi-
sualized as an area rather than as a subgraph. Therefore, we aim at transforming
an isochrone network representation into an isochrone area representation that
covers the (immediate) vicinity of the isochrone network.

The computation of an isochrone area from an isochrone network is similar
to the computation of a footprint for a set of points. The most common methods
for this are concave hull [10] and alpha shapes [4]. Since these methods compute
an area from a set of 2D points and we have a set of 2D links, they cannot
directly be applied. By transforming the links into a set of points, we loose the
edge information which might result in large errors, as illustrated in Fig. 2. The
isochrone network in Fig. 2(a) is transformed into a set of points in Fig. 2(b).
Figure 2(c) shows the area that is obtained with the alpha shapes or concave hull
method; the large area indicated by the letter “A” is missing. While a parameter
allows to control the computation of the area, it is generally impossible to find
the right parameter to obtain the correct area, and the problem remains that

3

with the transformation into a set of points relevant pieces of spatial information
are lost.

A

(a) Isochrone Network

A

(b) Points

A

(c) Concave Hull

Fig. 2. Concave Hull (and Alpha Shapes) Method.

In this paper we present two different solutions to transform an isochrone
network into an isochrone area. The link-based approach constructs a buffer of
a user-specific size around each individual link of the isochrone network, yield-
ing an area that possibly contains holes. This solution exploits existing spatial
database functionalities. The surface-based approach computes first a polygon
that covers the isochrone network and then creates a buffer around this poly-
gon. The obtained area doesn’t contain holes. To determine all objects within
an isochrone, the constructed area is intersected with the relation that stores
the objects. We empirically evaluate the two solutions using real-world data and
determining all objects within an isochrone. We measure the quality of each so-
lution by comparing it with a baseline solution that is precise but expensive in
terms of runtime. As quality estimators we use recall, precision, and f-measure.
The experiments show that the quality of the surface-based approach is higher
for buffers smaller than approximately 60 meters. For a larger buffer size both
approaches give similar results, since the area constructed by the link-based ap-
proach contains less holes and becomes more similar to the area constructed
by the surface-based approach. The surface-based approach is faster than link-
based approach, though both approaches scale almost linearly with the size of
the isochrone.

The rest of the paper is organized as follows. In Section 2 we discuss related
work. Sections 3 and 4 present the two different approaches for the computation
of an isochrone area. Section 5 presents the experimental results, and Section 6
draws conclusions and points to future work.

2 Related Work

Isochrones are first introduced in [1, 7] as a new query type in spatial network
databases, which is used by city planners as an instrument to analyze coverage
and reachability queries in a city. The work in [1, 7] computes isochrones for

4

bimodal networks, consisting of a pedestrian network and one or more bus net-
works. Since isochrones are represented as a subgraph of the pedestrian network,
only objects that lie exactly on the network edges can be determined. In this
paper we extend this work to represent isochrones as areas and to determine all
objects that lie within this area.

Among the various queries in spatial network databases, range queries are
closest to isochrones. A range query determines all objects (of a specific type)
that are within a specific distance from a query point. The main difference is
that an isochrone represents an area (containing all space points) from where
a query point is reachable in a given timespan, while a range query returns all
objects within a given distance. An isochrone can be intersected with any type
of objects without recomputing it from scratch, and it can also be graphically
visualized for a human user.

Range queries for spatial network databases are first introduced in [12], where
the Range Euclidean Restriction (RER) algorithm and the Range Network Ex-
pansion (RNE) algorithm are presented. Deng et al. [2] improve over the work
in [12] by performing less network distance calculations and therefore accessing
less network data. Mouratidis et al. [11] present a solution for continuous near-
est neighbor monitoring in road networks, where the query points and the data
objects move frequently and arbitrarily in the network. All these frameworks for
range queries and nearest neighbor queries assume that the objects lie exactly on
the network links. Isochrones, in particular the isochrone areas as constructed in
this paper can also catch objects that are in a (user-specified) immediate vicinity
of the links.

The work which is closest to our work is the continuous intersection join
presented in [13]. It proposes a solution to determine all objects that can be
reached from a moving query point within a specified time. The main idea is to
use a distance range query from the query point in order to determine the objects
that can be reached from there. However, the range query uses the Euclidean
distance resulting in a circular area around the query point, which is intersected
with the objects. Isochrones use the network distance, and the main challenge is
to construct a minimal area around the isochrone network which represents all
space points within the isochrone.

The computation of an isochrone area from an isochrone network is similar
to the computation of a convex or concave hull for a finite set of 2D points. Two
main algorithms are known for the concave hull: Jarvis March [9] and Graham
scan [8]. The main idea of the Jarvis March approach [9] is to include a point in
the convex hull that has the smallest polar angle with respect to a previous point.
As the initial point, the left-most point among all points is taken. The algorithm
runs in O(nh) time, where n is the number of points in the data set and h is a
number of points on the convex hull. The Graham scan approach [8] works in
three steps. First, the point with the smallest y-coordinate is chosen. Second, the
remaining points are increasingly sorted according to the x-coordinate. Finally,
for each next point in a convex hull, the turn between the point and the previous
two points is computed. If it is a right turn, the link from the second to the last

5

point is removed. If a left turn occurs, the last point is included into the convex
hull, and the next point is taken from the sorted array. The algorithm runs in
O(n log n) time for a finite set of n points.

In general, the shape of an isochrone area is closer to a concave hull than
to the convex hull. Different from the convex hull, there is no unique concave
hull. An algorithm for the computation of concave hulls for a set of 2D points is
presented in [10]. The algorithm is based on the k-nearest neighbors. Depending
on the choice of k, different concave hulls are generated. With a higher number
of k, the shape becomes smoother. With k = n, the concave hull coincides with
the convex hull. It is difficult to determine the right value of k to get a good
shape for the isochrone area.

A similar problem of finding footprints for a set of 2D points is discussed in [6]
and [3–5]. These approaches are based on so-called alpha shapes. The main idea
of the alpha shape algorithm is to draw circles with a radius of 1/alpha such
that they touch at least two points and none of the other points is inside those
circles. All points that touch a circle are selected and connected. If the radius is
big enough, the result is the convex hull. If the radius is too small, the result is
the set of all points without any connections.

Since isochrone networks are represented as 2D links, the above approaches
for the computation of convex/concave hulls and alpha shapes cannot be directly
applied to compute isochrone areas. If we first transform the links into points,
we loose important spatial information, which might lead to significant errors in
the shape of the isochrone area.

3 Link-Based Approach

In this section we describe the link-based approach, which draws a buffer around
each individual link of the isochrone network and returns the union of these
buffers as the isochrone area.

An isochrone network is represented as a graph G = (V,E, γ), where V is
a set of vertices (or nodes), E ⊆ V × V is a set of links (or edges), and γ is
a function that assigns a geometry to each edge. The geometry is a polyline,
γ((u, v)) = {p1, . . . , pn}, where p1, . . . , pn are space points that are connected by
lines.

To create the buffers we use Oracle’s built-in function SDO BUFFER(A,d),
which creates a buffer of size d around the spatial object A. Unfortunately, by
applying this function for a link, the border of the buffer is not going through the
endpoints of the link, as illustrated in Figure 3(a). The isochrone consists of the
nodes V = {q, a, b} and the links E = {(q, a), (q, b)}, where a and b represent the
outermost points from where the query point q is reachable in the given timespan
tmax. Drawing a buffer of distance d around each of the two links introduces an
error near the nodes a and b.

To remedy from this problem, we reduce the maximal timespan, tmax, of the
isochrone by an amount that corresponds to the buffer size d. That is, we deter-
mine t′max = tmax− d

s as the new timespan for the computation of the isochrone

6

network; s is the walking speed used for the computation of the isochrone. Using
t′max results in a smaller isochrone network. By constructing a buffer for each
link in the reduced isochrone network, the buffers cross exactly the outermost
points a and b of the original network (see Fig. 3(b)).

a bq
dd

(a)

a bq
d

a bq
dd

(b)

Fig. 3. Decreasing the Timespan for the Computation of the Isochrone Network.

Figure 4 shows the algorithm lISO for the computation of an isochrone
area using the link-based approach. The algorithm has two input parameters: an
isochrone network I; a buffer size d. The algorithm iterates over all links in the
isochrone network I and constructs a buffer of size d around each link. These
buffers are collected in B and are returned as area representation of the isochrone
I, covering all space point on the network and in the immediate vicinity from
where q is reachable in the given timespan.

Algorithm: lISO(I, d)

Input: Isochrone I = (V,E, γ); distance d;
Output: Isochrone area B;

B ← ∅ ;
foreach link l ∈ E do

B ← B ∪ {SDO BUFFER(l, d)};
end
return B;

Fig. 4: Link-based Approach for the Computation of an Isochrone Area.

Figure 5(a) shows the isochrone area computed with the link-based approach,
using a buffer size of 30 meters. Depending on the size of the buffer, the isochrone
contains more or less holes. The isochrone in Fig. 5(b) uses a buffer size of 50
meters, resulting in less holes.

4 Surface-Based Approach

The surface-based approach computes first the minimum bounding polygon of
the isochrone network, termed its surface, and draws then a buffer around the
surface. The surface of an isochrone I = (V,E, γ) is defined as the minimal set

7

(a) Buffer Size = 30 m (b) Buffer Size = 50 m

Fig. 5. Isochrone Area with the Link-Based Approach.

of links S ⊆ E that form a polygon and cover all other links in E. Figure 6(a)
shows the surface of the isochrone in our running example, which covers all street
links of the isochrone network.

Next, we construct a buffer of a user-specified size d around the surface
polygon in order to include also space points in the outer vicinity of the sur-
face polygon. Figure 6(b) shows the isochrone area that is constructed with the
surface-based approach. Obviously, the isochrone area does not contain any holes
(different from the link-based approach).

(a) Surface of the Isochrone (b) Isochrone Area

Fig. 6. Isochrone Area with Surface-Based Approach.

The algorithm to compute the surface of an isochrone is a generalization of
Jarvis’ algorithm [9] for the computation of the convex hull. The main idea is to
find first the link with the left-most endpoint (i.e., smallest x-coordinate) and
the smallest counter-clockwise angle with the y-axis. (Any other link which lies
on the surface polygon could be used as the initial link as well). Starting from
the initial link, the algorithm iteratively adds an adjacent link to the surface,
which has the smallest counter-clockwise angle with the link that has been added
previously. The algorithm terminates when it returns to the initial link.

8

Algorithm: sISO(I, d)

Input: Isochrone I = (V,E, γ); distance d;
Output: Isochrone area B

u0 ← argmin
v∈V

{v.x};

α← 360◦;
foreach link (u, v) ∈ E such that u = u0 do

α′ ← angle(u−(0, 1), u, v);
if α′ < α then

α← α′;
(u0, v0)← (u, v);

end
end
S ← {(u0, v0)};
(up, vp)← (u0, v0);
repeat

α← 360◦;
foreach link (u, v) ∈ E such that u = vp do

α′ ← angle(up, u, v);
if α′ < α then

α← α′;
(u′, v′)← (u, v);

end
end
S ← S ∪ {(u′, v′)};
(up, vp)← (u′, v′);

until (u′, v′) 6= (u0, v0);
B ← SDO BUFFER(S, d);
return B

Fig. 7: Algorithm sISO.

Figure 7 shows the algorithm, which has two input parameters: an isochrone
network I and the size d of the buffer. The algorithm returns the area represen-
tation of the isochrone I, using the surface-based approach.

The algorithm determines first the left-most node, u0, of the isochrone net-
work. Then, the link through u0 which has the smallest counter-clockwise angle
with the y-axis is determined. Figure 8(a) illustrates this step. The left-most
node is n1, which has two links (n1, n3) and (n1, n2). The link (n1, n3) has the
smaller angle, α1, and is chosen as the initial link and added to the surface
S. Next, the algorithm enters a loop, in which the surface is incrementally ex-
tended with a new link on each iteration until the initial link is encountered
again. (up, vp) represents the link that has been added in the previous iteration
(or the initial link on the first iteration). On each iteration all links that are
connected to (up, vp), i.e., have vp as source node, are considered. The link with
the smallest counter-clockwise angle with (up, vp) is on the surface and is added
to S. This step is illustrated in Fig. 8(b). The links (n3, n4) and (n3, n5) are
considered as possible extensions of the initial link (n1, n3). Since α3 is smaller

9

than α4, the link (n3, n4) is added to the surface S. The loop terminates when
the initial link (u0, v0) is encountered again. Figure 8(c) shows the completed
surface. As a last step, the algorithm creates a buffer of size d around the surface
of the isochrone, which is returned as a result.

n1 n2

n3

Y

α1

α2

(a)

n1

n3α3

α4
n4

n5

(b) (c)

Fig. 8. Step-Wise Computation of the Surface of an Isochrone.

Finding the left-most link at the beginning and the next link in each iteration
takes O(n) time, where n is the number of nodes in the isochrone. In the worst
case, the extension step iterates over all nodes (if all nodes are on the surface),
yielding an overall complexity of O(n2).

When multiple modes of transportation are considered, isochrones get typi-
cally disconnected. For instance, Fig. 9(a) shows an isochrone when walking in
combination with buses are considered. There is a large island (area) around the
query point and small islands around the reachable bus stops. While lISO cor-
rectly handles disconnected isochrones, the surface-based algorithm sISO works
only for isochrones that form a connected graph. To adapt the algorithm for
disconnected isochrones (as produced when multiple transportation modes are
considered), a pre-processing step is required to determine the connected com-
ponents (i.e., maximal connected subgraphs) of the isochrone, which can be done
in linear time. Then for each connected component the algorithm sISO is called.

5 Experimental Evaluation

In this section we present the results of an experimental evaluation of the two
algorithms using real-world data.

5.1 Setup and Data

The two algorithms for the computation of an isochrone area and the intersection
of the isochrone area with objects (e.g., houses) were implemented in Java on
top of the Oracle Spatial DBMS. The algorithms use built-in functionalities of
Oracle Spatial to construct buffers and to compute the intersection between
areas and objects. To compute the initial isochrone network, which is passed as
input to sISO and lISO, we use the algorithm in [7]. The spatial data, including

10

(a) (b)

Fig. 9. Isochrone for Multiple Modes of Transportation.

the isochrones and the objects, are stored in the database. All experiments were
run on a computer with a 2GHz CPU and 1.5 GB RAM.

For the experiments we used the street network of the city of Bolzano-Bozen,
which consists of approximately 3500 links (streets segments). As objects within
an isochrone we used the houses in Bolzano-Bozen (approximately 12300 houses),
which are stored in a separate table.

To measure the quality of lISO and sISO we implemented a baseline ap-
proach as a reference solution, which essentially works as follows. Each house
h is projected perpendicularly to the closest edge (u, v) in the pedestrian net-
work. More specifically, it is projected to a segment (pi, pi+1) of the polyline
γ((u, v)) = {p1, . . . , pn} that represents the edge’s geometry. Assume that a
house is mapped to point p on edge (u, v). Then a house is considered to be
within an isochrone if its Euclidean distance to p plus the network distance from
p to query point q is smaller than the maximal timespan of the isochrone. While
the basline approach is slow, since it needs to determine for each house the dis-
tance to each individual segment of all edges, we use it as a reference solution
to measure precision, recall, and f-measure of the surface-based and link-based
solutions.

5.2 Precision, Recall, and F-measure

Varying the Location of the Query Point. In the first experiment we use a
fixed timespan of 15 min, a walking speed of 1.6 m/s, and a buffer size of 30 m,
and we vary the location of the query point between locations in the center and
the border of the city as well as between dense, average, and sparse areas. To
measure the quality of the two approaches the f-measure is used. The result
of this experiment is presented in Fig. 10 and shows that the location of the
query point (and hence different densities of houses) has almost no impact on
the quality. Therefore, in the remaining experiments we use a fixed query point
in the city center.

11

 0

 0.2

 0.4

 0.6

 0.8

 1

dense
 center

average
 center

dense
 border

average
 border

sparse
 border

F
-m

ea
su

re

Surface-based approach
Link-based approach

Fig. 10. F-measure for Different Query Points.

Varying Buffer Size and Maximum Timespan. In the second experiment
we use a fixed query point in the city center and a walking speed of 1.6 m/s, and
we vary the buffer size between 10 and 120 m and the maximal timespan for the
isochrone between 10 and 50 min.

Figure 11 presents the precision of sISO and lISO. For both solutions the
precision depends on the size of the isochrone. The bigger the maximal timespan,
the higher is the precision. Vice versa, if the size of the buffer is too large,
the precision is decreasing, since many false positives are included. There is no
substantial difference in precision between sISO and lISO. The best precision
is obtained when the buffer size is between 10 and 30 m.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 30 60 90 120

P
re

ci
si

on

Buffer size (meters)

50 min
40 min
30 min
20 min
10 min

(a) sISO

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 30 60 90 120

P
re

ci
si

on

Buffer size (meters)

50 min
40 min
30 min
20 min
10 min

(b) lISO

Fig. 11. Precision

Figure 12 shows the recall, which for both solutions increases with the size
of the isochrone and with the size of the buffer, though the size of the buffer has
less impact in lISO. While the precision is almost identical for both solutions,
the surface-based approach has a significantly higher recall for small buffers up
to a size of 30 m. When the buffer size is small, the link-based approach misses
many objects that are located in the holes.

Figure 13 shows the f-measure. For a small buffer size up to approximately
60 m the surface-based approach is superior. For large buffers the difference be-

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 30 60 90 120

R
ec

al
l

Buffer size (meters)

50 min
40 min
30 min
20 min
10 min

(a) sISO

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 30 60 90 120

R
ec

al
l

Buffer size (meters)

50 min
40 min
30 min
20 min
10 min

(b) lISO

Fig. 12. Recall.

tween the two solutions disappears, since the isochrone area produced by the
link-based approach becomes more and more similar to the isochrone area pro-
duced by the surface-approach. The highest f-measure for both solutions is ob-
tained with a buffer size of approximately 60 m.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 30 60 90 120

F
-m

ea
su

re

Buffer size (meters)

50 min
40 min
30 min
20 min
10 min

(a) sISO

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 30 60 90 120

F
-m

ea
su

re

Buffer size (meters)

50 min
40 min
30 min
20 min
10 min

(b) lISO

Fig. 13. F-measure.

5.3 Runtime

In the last experiment we analyze the efficiency of the proposed solutions, by
varying the size of isochrone, since the number of links in an isochrone is the
most influencing factor for the running time. All other parameters are fixed:
buffer size 60 m, walking speed 1.6 m/s, and query point in the city center.

Figure 14 shows the results of the runtime experiment, distinguishing between
the time for computing the isochrone area, intersecting the area with the objects,
and the total runtime. The creation of the link-based area is more efficient.
However, the intersection of the isochrone area with the objects is faster in
the surface-based approach, since only one large area needs to be intersected.

13

Overall, both solutions scale almost linearly with the size of the isochrone, and
the surface-based approach is faster than the link-based approach in terms of
total runtime.

 0

 5

 10

 15

 20

 10 20 30 40 50

T
im

e
(s

ec
)

Size of isochrone (min)

Total time
Area creation time

Intersection time

(a) sISO

 0

 5

 10

 15

 20

 10 20 30 40 50

T
im

e
(s

ec
)

Size of isochrone (min)

Total time
Area creation time

Intersection time

(b) lISO

Fig. 14. Runtime.

6 Conclusion and Future Work

In this paper we present two different solutions, termed link-based approach and
surface-based approach, to determine all objects that lie within an isochrone.
Both solutions first transform an isochrone network into an isochrone area and
then perform an intersection with the relation that stores the objects. The link-
based approach constructs a buffer around each individual link of the isochrone
network. The surface-based approach computes first a polygon that covers the
isochrone network and then creates a buffer around this polygon. We run ex-
periments with real-world data to measure the quality and efficiency of the two
solutions. Both approaches achieve a high quality (compared to a precise yet slow
reference solution). The surface-based approach is superior for small buffers, and
it is more efficient than the link-based approach.

Future work is possible in various directions. More specifically, we will con-
duct more extensive experiments both to study the quality of the two solu-
tions for different types of objects and to analyze the scalability for very large
isochrones.

References

1. Veronika Bauer, Johann Gamper, Roberto Loperfido, Sylvia Profanter, Stefan
Putzer, and Igor Timko. Computing isochrones in multi-modal, schedule-based
transport networks (demo paper). In ACMGIS-2008), pages 1–2, Irvine, CA, USA,
November 5–7 2008.

2. Ke Deng, Xiaofang Zhou, Heng Tao Shen, Shazia W. Sadiq, and Xue Li. Instance
optimal query processing in spatial networks. VLDB J., 18(3):675–693, 2009.

14

3. H. Edelsbrunner. Weighted alpha shapes. Technical Report:UIUCDCS-R-92-1760,
1992.

4. Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the shape of
a set of points in the plane. IEEE Transactions on Information Theory, 29(4):551–
558, 1983.

5. Herbert Edelsbrunner and Ernst P. Mücke. Three-dimensional alpha shapes. In
VVS, pages 75–82, 1992.

6. Antony Galton and Matt Duckham. What is the region occupied by a set of points?
In GIScience, pages 81–98, 2006.

7. J. Gamper, M. Böhlen, W. Cometti, and M. Innerebner. Scalable computation
of isochrones in bimodal spatial networks. Technical report, Free University of
Bolzano-Bozen, 2010.

8. Ronald L. Graham. An efficient algorithm for determining the convex hull of a
finite planar set. Inf. Process. Lett., 1(4):132–133, 1972.

9. R. A. Jarvis. On the identification of the convex hull of a finite set of points in the
plane. Inf. Process. Lett., 2(1):18–21, 1973.

10. Adriano J. C. Moreira and Maribel Yasmina Santos. Concave hull: A k-nearest
neighbours approach for the computation of the region occupied by a set of points.
In GRAPP (GM/R), pages 61–68, 2007.

11. Kyriakos Mouratidis, Man Lung Yiu, Dimitris Papadias, and Nikos Mamoulis.
Continuous nearest neighbor monitoring in road networks. In VLDB, pages 43–54,
2006.

12. Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. Query processing
in spatial network databases. In VLDB, pages 802–813, 2003.

13. Rui Zhang, Dan Lin, Kotagiri Ramamohanarao, and Elisa Bertino. Continuous
intersection joins over moving objects. In ICDE, pages 863–872, 2008.

