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Abstract. An isochrone in a spatial network is the possibly disconnected set of
all locations from where a query point is reachable within a given time span and
by a given arrival time. In this paper we propose an efficient and scalable eval-
uation algorithm, termed (MINEX), for the computation of isochrones in multi-
modal spatial networks with different transportation modes. The space complex-
ity of MINEX is independent of the network size and its runtime is determined by
the incremental loading of the relevant network portions. We show that MINEX
is optimal in the sense that only those network portions are loaded that eventually
will be part of the isochrone. To keep the memory requirements low, we eagerly
expire the isochrone and only keep in memory the minimal set of expanded ver-
tices that is necessary to avoid cyclic expansions. The concept of expired ver-
tices reduces MINEX’s memory requirements from O(|V iso|) to O(

√
|V iso|)

for grid and O(1) for spider networks, respectively. We show that an isochrone
does not contain sufficient information to identify expired vertices, and propose
an efficient solution that counts for each vertex the outgoing edges that have not
yet been traversed. A detailed empirical study confirms the analytical results on
synthetic data and shows that for real-world data the memory requirements are
very small indeed, which makes the algorithm scalable for large networks and
isochrones.

1 Introduction

Reachability analyzes are important in many applications of spatial network databases.
For example, in urban planning it is important to assess how well a city is covered
by various public services such as hospitals or schools. An effective way to do so is
to compute isochrones. An isochrone is the possibly disconnected set of all locations
from where a query point, q, is reachable within a given time span. When schedule-
based networks, such as the public transport system, or time-dependent edge costs are
considered, isochrones depend on the arrival time at q. Isochrones can also be used
as a primitive operation to answer other spatial network queries that have to retrieve
objects within the area of the isochrone. For instance, by joining an isochrone with an
inhabitants database, the percentage of citizens living in the area of the isochrone can
be determined without the need to compute the distance to individual objects.

Example 1. Figure 1 shows the 10 min isochrone at 09:15 pm for a query point (*) in
Bozen-Bolzano. The isochrone consists of the bold street segments that cover all points



from where the query point is reachable in less than 10 minutes, starting at 09:05 pm or
later and arriving at 09:15 pm or before. A large area around the query point is within
10 minutes walking distance. Smaller areas are around bus stops, from where the query
point can be reached by a combination of walking and going by bus. The box in the
lower left corner shows the number of inhabitants in the isochrone area.

Fig. 1. Screenshot of an Isochrone.

We focus on isochrones in multimodal networks. Spatial networks can be classified
as continuous or discrete along, respectively, the space and the time dimension. Contin-
uous space means that all points on an edge are accessible, whereas in a discrete space
network only the vertices can be accessed. Continuous time networks can be traversed
at any point in time, discrete time networks follow an associated schedule. For instance,
the pedestrian network is continuous in time and space, whereas public transport sys-
tems are discrete in both dimensions.

The paper proposes the Multimodal Incremental Network Expansion with vertex
eXpiration (MINEX) algorithm. Starting from query point, q, the algorithm expands
the network backwards along incoming edges in all directions until all space points that
are within dmax from q are covered. Since only network portions are loaded that are
part of the isochrone, the memory complexity of MINEX is independent of the network
size. This yields a solution that scales to GIS platforms where a web server must be
able to handle a large number of concurrent queries. The runtime is determined by the
incremental loading of the network portions that are part of the isochrone. Our goal
in terms of runtime is to be on a par with existing solutions for small to medium-size
isochrones.

MINEX eagerly prunes the isochrone and keeps in memory only the expanded ver-
tices that form the expansion frontier and are needed to avoid cyclic network expan-
sions. These vertices must be updated as the expansion proceeds and the frontier moves
outwards. Newly encountered vertices are added and vertices that will never be revis-
ited, termed expired vertices, are removed. The removal of expired vertices reduces the
memory requirements from O(|V iso|) to O(

√
|V iso|) for grid and to O(1) for spider

networks, respectively. Since the isochrone does not contain sufficient information to
identify expired vertices, we propose an efficient strategy that counts for each vertex v
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the outgoing edges that have not yet been traversed. When all these edges have been
traversed, v will not be revisited and hence expires.

The technical contributions can be summarized as follows:
– We define vertex expiration, which allows to determine a minimal set of vertices

that need to be kept in memory to avoid cyclic network expansions. Since an
isochrone does not contain sufficient information to identify such vertices, we pro-
pose an efficient solution that counts the outgoing edges that are not yet traversed.

– We propose a scalable disk-based multimodal network expansion algorithm,
MINEX, that is independent of the network size and depends only on the isochrone
size. Its runtime isO(|V iso|). The eager expiration of vertices reduces the memory
requirements from O(|V iso|) to O(

√
|V iso|) and O(1) for grid and spider net-

works, respectively.
– We show that MINEX is optimal in the sense that only portions of the network are

loaded that will become part of the isochrone, and each edge is loaded only once.
– We report the results of an extensive empirical evaluation that shows the scalability

of MINEX, confirms the analytical results for the memory requirements on syn-
thetic data, and reveals an even more substantial reduction to a tiny and almost
constant fraction of the network size on real-world data.
The rest of the paper is organized as follows. Section 2 discusses related work. In

Section 3 we define isochrones in multimodal networks. Section 4 presents the MINEX
algorithm. Section 5 reports the results of the empirical evaluation. Section 6 concludes
the paper and points to future research directions.

2 Related Work

Isochrones have been introduced by Bauer et al. [3]. The algorithm suffers from a high
initial loading cost and is limited by the available memory since the entire network
is loaded in memory. Gamper et al. [8] provide a formal definition of isochrones in
multimodal spatial networks, together with a disk-based multimodal incremental net-
work expansion (MINE) algorithm that is independent of the actual network size but
maintains the entire isochrone in memory. This paper proposes a new network expi-
ration mechanism that maintains the minimal set of vertices that is required to avoid
cyclic network expansions. The actual memory requirements turn out to be only a tiny
fraction of the isochrone size. We conduct extensive experiments and compare our al-
gorithm with other network expansion algorithms.

Marciuska and Gamper [18] start with an isochrone and present two different ap-
proaches to determine objects that are located within an isochrone. To capture objects
that are not exactly on the streets but slightly outside (e.g., houses along streets), the
basic idea is to first transform an isochrone represented as a subgraph into an isochrone
represented as an area and to intersect this area with the objects relation.

Most network queries, including isochrones, are based on the computation of the
shortest path (SP) among vertices and/or objects. Dijkstra’s [6] incremental network
expansion algorithm is the most basic solution and influenced many of the later works.
Its major limitations are the expansion towards all directions and its main memory na-
ture. The A∗ algorithm [10] uses a lower bound estimate of the SP (e.g., Euclidean
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distance) to get a more directed search with less vertex expansions. Other techniques
have been proposed to improve the performance of SP and other network queries, in-
cluding disk-based index structures and pre-processing techniques.

Papadias et al. [19] present two disk-based frameworks for computing different net-
work queries: Incremental Euclidean Restriction (IER) repeatedly uses the Euclidean
distance to prune the search space and reduce the number of objects for which the net-
work distance is computed; Incremental Network Expansion (INE) is an adaptation of
Dijkstra’s SP algorithm. Deng et al. [5] improve over [19] by exploiting the incremental
nature of the lower bound to limit the number of distance calculations to only vertices in
the final result set. Almeida and Güting [4] present an index structure and an algorithm
for kNN queries to allow a one-by-one retrieval of the objects on an edge.

Another strategy takes advantage of partitioning a network and pre-computing all
or some of the SPs to save access and computation cost at query time. Examples are
the partitioning into Voronoi regions and pre-computing distances within and across
regions [16], shortest path quadtrees [21], and the representation of a network as a set
of spanning trees with precomputed NN lists [11]. Other works divide a large network
into smaller subgraphs that are hierarchically organized together with pre-computed
results between boundary vertices [1, 13, 14].

For networks that are too large for exact solutions in reasonable time, efficient ap-
proximation techniques have been proposed, most prominently based on the landmark
embedding technique and sketch-based frameworks [9, 17, 20, 22]. For a set of so-called
landmark vertices the distance to all other vertices is pre-computed. At query time, the
precomputed distances and the triangle inequality allow to estimate the SP.

The work in [7, 15] investigates time-varying edge costs, e.g., due to changing traf-
fic conditions. There is far less work on schedule-based transportation networks and
networks that support different transportation modalities [12]. Bast [2] describes why
various speed up techniques for Dijkstra’s SP algorithm are either not applicable or
improve the efficiency only slightly in schedule-based networks.

The MINEX algorithm proposed in this paper leverages Dijkstra’s incremental net-
work expansion strategy for multiple transportation modes, and it applies eager network
expiration to minimize the memory requirements. Most optimization techniques from
previous work are not applicable to isochrones in multimodal networks, mainly due to
the presence of schedule-based networks (cf. [2]) and the need to explore each individ-
ual edge, which makes search space pruning more difficult and less effective.

3 Isochrones in Multimodal Networks

In this section we provide a formal definition of isochrones in multimodal spatial net-
works that support different transport modes.

Definition 1 (Multimodal Network). A multimodal network is a seven-tuple N =
(G,R, S, ρ, µ, λ, τ). G = (V,E) is a directed multigraph with a set V of vertices
and a multiset E of ordered pairs of vertices, termed edges. R is a set of transport
systems. S = (R,TID ,W, τa, τd) is a schedule, where TID is a set of trip identi-
fiers, W ⊆ V , and τa : R × TID × W 7→ T and τd : R × TID × W 7→ T
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determine arrival and departure time, respectively (T is the time domain). Function
µ : R 7→ {’csct’, ’csdt’, ’dsct’, ’dsdt’} assigns to each transport system a transport
mode, and the functions ρ : E 7→ R, λ : E 7→ R+, and τ : E × T 7→ R+ assign to
each edge transport system, length, and transfer time, respectively.

A multimodal network permits several transport systems, R, with different modali-
ties in a single network: continuous space and time mode µ(.) = ’csct’, e.g., pedestrian
network; discrete space and time mode µ(.) = ’dsdt’, e.g., the public transport sys-
tem such as trains and buses; discrete space continuous time mode µ(.) = ’dsct’, e.g.,
moving walkways or stairs; continuous space discrete time mode µ(.) = ’csdt’, e.g.,
regions or streets that can be passed during specific time slots only. Vertices represent
crossroads of the street network and/or stops of the public transport system. Edges rep-
resent street segments, transport routes, moving walkways, etc. The schedule stores for
each discrete time (’dsdt’, ’csdt’) transport system inR the arrival and departure time at
the stop nodes for the individual trips. For an edge e = (u, v), function τ(e, t) computes
the time-dependent transfer time that is required to traverse e, when starting at u as late
as possible yet arriving at v no later than time t. For discrete time edges, the transfer
time is the difference between t and the latest possible departure time at u according
to the given schedule in order to reach v before or at time t. This includes a waiting
time should the arrival at v be before t. For continuous time edges, the transfer time
is modeled as a time-dependent function that allows to consider, e.g., different traffic
conditions during rush hours.

Example 2. Figure 2 shows a multimodal network with two transport systems, R =
{’P’, ’B’}, representing the pedestrian network with mode µ(’P’) = ’csct’ and bus
line B with mode µ(’B’) = ’dsdt’, respectively. Solid lines are street segments of the
pedestrian network, e.g., edge e = (v1, v2) with ρ(e) = ’P’. An undirected edge is a
shorthand for a pair of directed edges in opposite directions. Pedestrian edges are an-
notated with the edge length, which is the same in both directions, e.g., λ((v1, v2)) =
λ((v2, v1)) = 300. We assume a constant walking speed of 2m/s, yielding a fixed trans-
fer time, τ(e, t) = λ(e)

2 m/s . Dashed lines represent bus line B. An excerpt of the schedule is
shown in Fig. 2(b), e.g., TID = {1, 2, . . . }, τa(’B’, 1, v6) = τd(’B’, 1, v6) = 05:33:00.
The transfer time of a bus edge e = (u, v) is computed as τ(e, t) = t − t′, where
t′ = max{τd(’B’, tid , u) | τa(’B’, tid , v) ≤ t} is the latest departure time at u.

q

v0 v1 v2 v3 v4

v5v6v7v8

v9200 300

250

180 80 440

250

200

300500200

’P’
’B’

(a) Network

R TID Stop Arrival Departure
B 1 v7 05:31:30 05:32:00
B 1 v6 05:33:00 05:33:00

...
...

...
...

B 2 v7 06:01:30 06:02:00
B 2 v6 06:03:00 06:03:00
B 2 v3 06:05:00 06:05:30

(b) Schedule

Fig. 2. Multimodal Network.
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A location in N is any point on an edge e = (u, v) ∈ E that is accessible. We
represent it as l = (e, o), where 0 ≤ o ≤ λ(e) is an offset that determines the relative
position of l from u on edge e. A location represents vertex u if o = 0 and vertex v if
o = λ(e); any other offset refers to an intermediate point on edge e. In continuous space
networks all points on the edges are accessible. Since a pedestrian segment is modeled
as a pair of directed edges in opposite direction, any point on it can be represented by
two locations, ((u, v), o) and ((v, u), λ((u, v))−o), respectively. For instance, in Fig. 2
the location of q is lq = ((v2, v3), 180) = ((v3, v2), 80). In discrete space networks
only vertices are accessible, thus o ∈ {0, λ(e)} and locations coincide with vertices.

An edge segment, (e, o1, o2), with 0 ≤ o1 ≤ o2 ≤ λ(e) represents the contigu-
ous set of space points between the two locations (e, o1) and (e, o2) on edge e. We
generalize the length function for edge segments to λ((e, o1, o2)) = o2 − o1.

Definition 2 (Path, Path Cost). A path from a source location ls = ((v1, v2), os) to a
destination location ld = ((vk, vk+1), od) is defined as a sequence of connected edges
and edge segments, p(ls, ld) = 〈x1, . . . , xk〉, where x1 = ((v1, v2), os, λ((v1, v2))),
xi = (vi, vi+1) for 1 < i < k, and xk = ((vk, vk+1), 0, od)). With arrival time t at ld,
the path cost is

γ(〈x1, . . . , xk〉, t) =

{
τ(xk, t) k=1,

γ(〈xk〉, t) + γ(〈x1, . . . , xk−1〉, t−γ(〈xk〉, t)) k>1.

The first and the last element in a path can be edge segments, whereas all other
elements are entire edges. Since isochrones depend on the arrival time at the query
point, we define the path cost recursively as the cost of traversing the last edge (seg-
ment), xk, considering the arrival time t at the destination ld, plus the cost of traversing
〈x1, . . . , xk−1〉, where the arrival time at vk (the target vertex of edge xk−1) is deter-
mined as t minus the cost of traversing xk. The cost of traversing a single edge is the
transfer time τ . Edges along a path may belong to different transport systems, which
enables the changing of transport system along a path.

Example 3. In Fig. 2, a path from v7 to q is to take bus B to v3 and then walk to q, i.e.,
p(v7, lq) = 〈x1, x2, x3〉, where x1 = (v7, v6) and x2 = (v6, v3) are complete edges
and x3 = ((v3, v2), 0, 80) is an edge segment. With arrival time t = 06:06:00, the path
cost is γ(p(v7, lq), t) = (06:03:00−06:02:00)+(06:05:20−06:03:00)+80/2 = 240 s.
To reach q at 06:06:00, the bus must arrive at v3 no later than 06:05:20. Since the latest
bus matching this constraint arrives at 06:05:00, we have a waiting time of 20 s at v3.

The network distance, d(ls, ld, t), from a source location ls to a destination location
ld with arrival time t at ld is defined as the minimum cost of any path from ls to ld with
arrival time t at ld if such a path exists, and∞ otherwise.

Definition 3 (Isochrone). Let N = (G,R, S, µ, ρ, λ, τ) with G = (V,E) be a mul-
timodal network, q be the query point with arrival time t, and dmax > 0 be a time
span. An isochrone, N iso = (V iso, Eiso), is defined as the minimal and possibly dis-
connected subgraph of G that satisfies the following conditions:
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– V iso ⊆ V ,
– ∀l(l = (e, o) ∧ e ∈ E ∧ d(l, q, t) ≤ dmax

⇔ ∃x ∈ Eiso(x = (e, o1, o2) ∧ o1 ≤ o ≤ o2)).

The first condition requires the vertices of the isochrone to be a subset of the network
vertices. The second condition constrains an isochrone to cover exactly those locations
that have a network distance to q that is smaller or equal than dmax Notice the use of
edge segments in Eiso to represent edges that are only partially reachable. Whenever
an edge e is entirely covered, we use e instead of (e, 0, λ(e)).

Example 4. In Fig. 3, the subgraph in bold represents the isochrone for dmax = 5min
and t = 06:06:00. The numbers in parentheses are the network distance to q. Edges
close to q are entirely reachable, whereas edges on the isochrone border are only par-
tially reachable. For instance, (v0, v1) is only reachable from offset 80 to v1. Bus edges
are not included in the isochrone since intermediate points on bus edges are not ac-
cessible. Formally, the isochrone in Fig. 3 is represented as N iso = (V iso, Eiso) with
V iso = {v0, . . . , v9} and Eiso = {((v0, v1), 80, 200), ((v8, v1), 130, 250), (v1, v2),
(v2, v1), (v2, v3), (v3, v2), (v3, v4), (v4, v3), ((v5, v4), 170, 250), ((v9, v4), 120, 200),
((v5, v6), 60, 300), ((v7, v6), 260, 500), ((v6, v7), 380, 500), ((v8, v7), 80, 200)}.

q

v0(340) v1(240) v2(90) v3(40) v4(260)

v5(360)v6(180)v7(240)v8(340)

v9(360)
80 120 300

130

120

180 80 440

170

80

80 120

6024024014012012080

Fig. 3. Isochrone in Multimodal Network.

4 Incremental Network Expansion in Multimodal Networks

This section presents the multimodal incremental network expansion algorithm with
vertex expiration (MINEX) for computing isochrones in multimodal networks.

4.1 Algorithm MINEX

Consider a multimodal network N, query point q with arrival time tq , duration dmax,
and walking speed s. The expansion starts from q and propagates backwards along
the incoming edges in all directions. When a vertex v is expanded, all incoming edges
e = (u, v) are considered, and the distance of u to q when traversing e is incrementally
computed as the distance of v plus the time to traverse e. The expansion terminates
when all locations with a network distance to q that is smaller than dmax have been
reached.

Algorithm 1 shows MINEX which implements this strategy. The multimodal net-
work is stored in a database, and – as the expansion proceeds – the portions of the net-
work that eventually will form the isochrone are incrementally retrieved. The algorithm
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maintains two sets of vertices: closed vertices (C) that have already been expanded and
open vertices (O) that have been encountered but are not yet expanded. For each ver-
tex v ∈ O ∪ C, we record the network distance to q, dv (abbrev. for d(v, q, tq)), and
a counter, cntv , which keeps track of the number of outgoing edges that have not yet
been traversed. C is initialized to the empty set. O is initialized to v with dv = 0 and
the number of outgoing edges if q coincides with vertex v. Otherwise, q = ((u, v), o) is
an intermediate location, and O is initialized to u and v with the corresponding walking
distance to q; the reachable segments of edges (u, v) and (v, u) are output.

Algorithm 1: MINEX(N, q, tq, dmax)

1 C ← ∅;
2 if q coincides with v then O ← {(v, 0, cntv)};
3 else // q = ((u, v), o) = ((v, u), o′)
4 O ← {(u, o/s, cntu), (v, o′/s, cntv)};
5 Output ((u, v),max(0, (o/s−dmax)s), o) and ((v, u),max(0, (o′/s−dmax)s), o

′);

6 whileO 6= ∅ and first element has distance≤ dmax do
7 (v, dv, cntv)← first element fromO;
8 O ← O \ {v};
9 C ← C ∪ {v};

10 foreach e = (u, v) ∈ E do
11 if u 6∈ O ∪ C thenO ← O ∪ {(u,∞, cntu)};
12 d′u ← τ(e, tq − dv) + dv ;
13 du ← min(du, d

′
u);

14 cntu ← cntu − 1;
15 if u ∈ C ∧ cntu = 0 then C ← C \ {u};
16 if µ(ρ(e)) ∈ {’csct’, ’csdt’} then
17 if d′u ≤ dmax then Output (e, 0, λ(e));
18 else Output (e, o, λ(e)), where d((e, o), q, tq) = dmax;

19 if cntv = 0 then C ← C \ {v};
20 return;

During the expansion phase, vertex v with the smallest network distance is dequeued
fromO and added to C. All incoming edges, e = (u, v), are retrieved from the database
and considered in turn. If vertex u is visited for the first time, it is added to O with a
distance of ∞ and the number of outgoing edges, cntu. Then, the distance d′u of u
when traversing e is computed and the distance du is updated. If e is a ’csct’ or ’csdt’
edge, the reachable part of e is added to the result. A ’dsct’ and ’dsdt’ edges produce
no direct output, since only the vertices are accessible, which are added when their
incoming ’csct’ edges are processed. Finally, cntu is decremented by 1; if u is closed
and cntu = 0, u is expired and removed from C (more details on vertex expiration are
below). Once all incoming edges of v are processed, the expiration and removal of v
is checked. The algorithm terminates when O is empty or the network distance of the
closest vertex in O exceeds dmax.

Example 5. Figure 4 illustrates a few steps of MINEX for dmax = 5min, tq =
06:06:00, and s = 2m/s. Bold lines indicate reachable network portions, solid black
nodes are closed, and bold white nodes are open. The numbers in parentheses are the
distance and the counter. Figure 4(a) shows the isochrone after the initialization step
with C = {} and O = {(v2, 90, 3), (v3, 40, 3)}. Vertex v3 has the smallest distance

8



to q and is expanded next (Fig. 4(b)). The distance of the visited vertices is dv4 =
40 + 440/2 = 260 s and d′v2 = 40 + 260/2 = 140 s, which does not improve the old
value dv2 = 90 s. For the distance of v6, we determine the required arrival time at v3 as
t = tq−dv3 = 06:06:00−40 s = 06:05:20 and the latest bus departure at v6 as 06:03:00,
yielding dv6 = 40 + (06:05:20 − 06:03:00) = 180 s. After updating the counters, the
new vertex sets are C = {(v3, 40, 3)} and O = {(v2, 90, 2), (v6, 180, 2), (v4, 260, 2)}.
Next, v2 is expanded as shown in Fig. 4(c)). Figure 4(d) shows the isochrone after the
termination of the algorithm; the gray vertex v3 is expired.

q

v0 v1 v2(90, 3) v3(40, 3)
v4

v5v6v7v8

v9200 300

250

180 80 440

250

200

300500200

(a) Initialization

q

v0 v1 v2(90, 2) v3(40, 3) v4(260, 2)

v5v6(180, 2)v7v8

v9200 300

250

180 80 440

250

200

300500200

(b) After Expanding v3

q

v0 v1(240, 2) v2(90, 2) v3(40, 1) v4(260, 2)

v5v6(180, 2)v7v8

v9200 300

250

180 80 440

250

200

300500200

(c) After Expanding v2

q

v0(340, 0) v1(240, 2) v2(90, 1) v3(40, 0) v4(260, 2)

v5(360, 1)v6(180, 1)v7(240, 1)v8(340, 1)

v9(360, 0)
80 120 300

130

120

180 80 440

170

80

80 120

6024024014012012080

(d) After Terminating

Fig. 4. Stepwise Computation of N iso for dmax = 5min, s = 2m/s, and tq = 06:06:00.

Notice that an algorithm that alternates between (completely) expanding the con-
tinuous network and (completely) expanding the discrete network is sub-optimal since
many portions of the network would be expanded multiple times. We empirically eval-
uate such an approach in Sec. 5.

4.2 Expiration of Vertices

Closed vertices are needed to avoid cyclic network expansion. In order to limit the
number of closed vertices that need to be kept in memory we introduce expired vertices
(Def. 4). Expired vertices are never revisited in future expansion steps, hence they are
not needed to prevent cyclic expansions and can be removed (Lemma 1). Isochrones
contain insufficient information to handle vertex expiration (Lemma 2). Therefore,
MINEX uses a counter-based solution to correctly identify expired vertices and eagerly
expire nodes during the expansion (Lemma 3).

To facilitate the discussion we introduce a couple of auxiliary terms. For a vertex v,
the term in-neighbor refers to a vertex u with an edge (u, v) and the term out-neighbor
refers to a vertex w with an edge (v, w). Recall that the status of vertices transitions
from open (O) when they are encountered first, to closed (C) when they are expanded,
and finally to expired (X) when they are expired; the sets O, C, and X are pairwise
disjoint.

Definition 4 (Expired Vertex). A closed vertex, u ∈ C, is expired if all its out-
neighbors are either closed or expired, i.e., ∀v((u, v) ∈ E ⇒ v ∈ C ∪X).
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Example 6. Consider the isochrone in Fig. 4(d). Vertex v3 is expired since v2 and v4
are closed, and v3 has no other out-neighbors. In contrast, v2 is not yet expired since
the out-neighbor v0 is not yet closed (and the expansion of v0 leads back to v2).

Lemma 1. An expired vertex u will never be revisited during the computation of the
isochrone and can be removed from C without affecting the correctness of MINEX.

Proof. There is only one way to visit a vertex u during network expansion: u has an
out-neighbor v (that is connected via an edge (u, v) ∈ E) and v ∈ O; the expansion of
v visits u. Since according to Def. 4 all of u’s out-neighbors are closed or expired, and
closed and expired vertices are not expanded (line 11 in Alg. 1), u cannot be revisited.

The identification of expired vertices according to Def. 4 has two drawbacks: (1) it
requires a database access to determine all out-neighbors since not all of them might
already have been loaded, and (2) the setX of expired vertices must be kept in memory.

Lemma 2. If the isochrone is used to determine the expiration of a closed vertex, u ∈
C, the database must be accessed to retrieve all of u’s out-neighbors, and X needs to
be stored in memory.

Proof. According to Def. 4, for a closed vertex u to expire we have to check that all
out-neighbors v are closed or expired. The expansion of u loaded all out-neighbors v
that have also an inverse edge, (v, u) ∈ E. For out-neighbors v that are not connected
by an inverse edge, (v, u) 6∈ E, we have no guarantee that they are loaded. Therefore,
we need to access the database to get all adjacent vertices. Next, suppose that X is
not maintained in memory and there exists an out-neighbor v of u without an inverse
edge, i.e., (v, u) 6∈ E. If v is in memory, its status is known. Otherwise, either v already
expired and has been removed, or it has not yet been visited. In the former case, u shall
expire, but not in the latter case, since the expansion of v (re)visits u. However, with
the removal of X we loose the information that these vertices already expired, and we
cannot distinguish anymore between not yet visited and expired vertices.

Example 7. The isochrone does not contain sufficient information to determine the ex-
piration of v2 in Fig. 4(c). While v1 and v3 are loaded and their status is known, the
out-neighbor v0 is not yet loaded (and actually violates the condition for v2 to expire).
To ensure that all out-neighbors are closed, a database access is needed. Next, consider
Fig. 4(d), where v3 is expired, i.e., X = {v3}. To determine the expiration of v2, we
need to ensure that v3 ∈ C ∪X . If X is removed from memory, the information that v3
is already expired is lost. Since v3 will never be revisited v2 will never expire.

To correctly identify and remove all expired vertices without the need to access the
database and explicitly store X , MINEX maintains for each vertex, u, a counter, cntu,
that keeps track of the number of outgoing edges of u that have not yet been traversed.

Lemma 3. Let cntu be a counter associated with vertex u ∈ V . The counter is ini-
tialized to the number of outgoing edges, cntu = |{(u, v) | (u, v) ∈ E}|, when u is
encountered for the first time. Whenever an out-neighbor v of u is expanded, cntu is
decremented by 1. Vertex u is expired iff u ∈ C and cntu = 0.

10



Proof. Each vertex v expands at most once (when it is dequeued from O), and the
expansion of v traverses all incoming edges (u, v) and decrements the counter cntu of
vertex u by 1. Thus, each edge in the network is traversed at most once. When cntu = 0,
vertex umust have been visited via all of its outgoing edges. From this we can conclude
that all out-neighbors have been expanded and are closed, which satisfies the condition
for vertex expiration in Def. 4.

Example 8. In the isochrone in Fig. 4(d), vertex v3 is expired and can be removed since
cntv3 = 0 and v3 ∈ C. Vertex v2 expires when v0 is expanded and counter cntv2 is
decremented to 0. Similar, vertex v6 expires when v5 is expanded.

Lemma 4. Vertices cannot be expired according to an LRU strategy.

Proof. We show a counter-example in Fig. 5(a), which illustrates a multimodal network
expansion that started at q. Although q has been expanded and closed first, it cannot be
expired because an edge from vertex v, which will be expanded later, leads back to q
(and would lead to cyclic expansions). In contrast, the gray vertices that are expanded
and closed after q can be expired safely.

q v

(a) LRU Strategy

q

(b) Grid

q

(c) Spider

Fig. 5. Network Expiration.

4.3 Properties

Vertex expiration ensures that the memory requirements are reduced to a tiny fraction
of the isochrone. Figures 5(b) and 5(c) illustrate the isochrone size and MINEX’s mem-
ory complexity for grid and spider networks, respectively. Solid black vertices (C) and
vertices with a bold border (O) are stored in memory, whereas gray vertices are ex-
pired (X) and removed from memory. The following two lemmas provide a bound for
the isochrone size and MINEX’s memory complexity for these two types of networks.
(Only the pedestrian mode is considered, though the results can easily be extended to
multimodal networks.)

Lemma 5. The size of an isochrone, |V iso|, is O(d2max) for a grid network and
O(dmax) for a spider network and a central query point q.
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Proof. Consider the grid network in Fig. 5(b). Without loss of generality, we measure
the size of an isochrone as the number of its vertices (i.e., open, closed, and expired
vertices), and we assume a uniform distance of 1 between connected vertices. The size
of an isochrone with distance d = 1, 2, . . . is given by the recursive formula |V iso|d =
|V iso|d−1 + 4d with |V iso|0 = 1; 4d is the number of new vertices that are visited
when transitioning from distance d−1 to d (i.e., the number of vertices at distance d
that are visited when all vertices at distance d−1 are expanded). This forms an arithmetic
series of second order (1, 5, 13, 25, 41, 61, . . . ) and can also be written as |V iso|d =

1 +
∑d
i=0 4i = 2d2 + 2d+ 1, which yields |V iso| = O(d2max).

Next, consider the spider network in Fig. 5(c). Without loss of generality, we assume
a uniform distance of 1 between all adjacent vertices along the same outgoing line from
q. It is straightforward to see that the size of the isochrone is |V iso| = deg(q) · dmax +
1 = O(dmax), where deg(q) is the degree of vertex q.

Lemma 6. The memory complexity of MINEX is |O ∪ C| = O(dmax) = O(
√
|V iso|)

for a grid network and O(1) for a spider network and a central query point q.

Proof. Recall that MINEX keeps only the open and closed vertices, O ∪ C, in mem-
ory. Consider the grid network in Fig. 5(b). By referring to the proof of Lemma 5, the
cardinality of the open vertices at distance d can be determined as |O|d = 4d and the
cardinality of the closed vertices as |C|d = 4(d − 1). Thus, the memory requirements
in terms of dmax are |O ∪ C| = O(dmax).

To determine the memory requirements depending on the size of the isochrone,
|V iso|, we use the formula for the size of an isochrone from the proof of Lemma 5 and
solve the quadratic equation 2d2 + 2d+ 1− |V iso|d = 0, which has the following two

solutions: d1,2 =
−2±
√

22−4·2·(1−|V iso|d)
2·2 =

−1±
√

2|V iso|d−1
2 . Since the result must be

positive, d =
−1+
√

2|V iso|d−1
2 is the only solution. By substituting d in the above for-

mulas for open and closed vertices we get, respectively, |O|d = 4d = 4
−1+
√

2|V iso|d−1
2

and |C|d = 4(d− 1) = 4(
−1+
√

2|V iso|d−1
2 − 1), which proves |O ∪ C| = O(

√
V iso).

Next, we consider the spider network in Fig. 5(c) with the query point q in the cent-
re. It is straightforward to see that the cardinality of the open and closed vertices is
|O ∪ C| = 2 · deg(q) = O(1), where deg(q) is the degree of vertex q.

Theorem 1. Algorithm MINEX is optimal in the sense that all loaded vertices and
’csct’/’csdt’ edges are part of the isochrone, and each of these edges is loaded and
traversed only once.

Proof. When a vertex v is expanded, all incoming edges e = (u, v) are loaded and pro-
cessed (Alg. 1, line 10). If e is a ’csct’/’csdt’ edge, the reachable portion of e (including
the end vertices u and v) is added to the isochrone (line 16). While u might not be
reachable, v is guaranteed to be reachable since dv ≤ dmax. In contrast, ’dsct’/’dsdt’
edges are not added since they are not part of the isochrone; only the end vertices u and
v are accessible, which are added when the incoming ’csct’/’csdt’ edges are processed.
Therefore, since each vertex is expanded at most once each edge is loaded at most once,
and all loaded edges except ’dsct’/’dsdt’ edges are part of the isochrone.
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5 Empirical Evaluation

5.1 Overview

Setup and Data Sets In the experiments we measure memory and runtime
complexity of MINEX and compare it with the following alternative approaches:

Fig. 6. Network Expansion in IER.

(1) Incremental network expansion
INE [19], which incrementally loads the
network but keeps all loaded vertices
in memory. (2) Dijkstra’s algorithm [6],
which initially loads the entire network
in memory. (3) Incremental Euclidean
restriction IER [19], which instead of
loading the entire network, uses the
Euclidean lower bound property to incre-
mentally load smaller network chunks as
illustrated in Fig. 6. First, a chunk around
q is loaded that contains all vertices that
are reachable in walking mode (i.e.,
within distance dmax ∗ s). After doing
network expansion in memory, for all
encountered bus stops a new (smaller) chunk is loaded, etc. Chunks are not re-loaded
again if they are completely covered by network portions that are already in memory.
(4) PGR, which is based on PostgreSQL’s pgRouting and works similar to IER, but
used the network distance instead of the Euclidean distance.

The multimodal networks and the schedules are stored in a PostgreSQL 8.4 database
with the spatial extension PostGIS 1.5 and the PG routing extension. All experiments
run in a virtual machine (64bits) on a Dual Processor Intel Xeon 2.67 GHz with
3 GB RAM. The algorithms were implemented in Java using the JDBC API to com-
municate with the database.

We test threes real-world networks that are summarized in Table 1 and described
below. Size is the network size, and |V |, |E|, |E’csct’|, |E’dsdt’|, and |S| are the number
of vertices, edges, pedestrian edges, edges of different means of transport, and schedule
entries, respectively. The size is given in Megabyte, whereas the other columns show
the number of tuples in K. We use also synthetic grid and spider networks like the
one shown in Fig. 5(b) and 5(c). The walking speed in all experiments is set to 1m/s.
Isochrone size (|V iso|) and the memory requirements (|V MM |) are measured in terms
of number of vertices. The other input parameters vary from dataset to dataset.

Table 1. Real-World Data Sets: Italy (IT), South Tyrol (ST), and San Francisco (SF).

Data Size |V | |E| |E’csct’| |E’dsdt’| |S|
IT 2,128 1, 372.0 3, 633.7 3, 633.1 0.6 1.3
ST 137 77.7 197.8 182.4 9.4 179
SF 138 33.6 96.4 90.0 6.4 1, 112
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Summary of Experiments The first experiment in Sec. 5.2 measures memory and
confirms that thanks to vertex expiration MINEX’s memory requirements are only a
small fraction of the isochrone size in all settings, whereas all other algorithms require
significantly more. The second experiment in Sec. 5.3 shows that IER loads many edges
multiple times, whereas MINEX loads each edge in the isochrone only once. The third
experiment in Sec. 5.4 measures the runtime. For isochrones that are smaller than 9% of
the network (which is frequently the case, especially for large and skewed regional net-
works) MINEX outperforms Dijkstra, whereas the latter is better for large isochrones,
provided that the entire network fits into memory.

5.2 Memory Consumption
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Fig. 7. Memory Requirements in Synthetic Networks.

We begin with synthetic
networks; only the pedes-
trian mode is used. The
results confirm Lemma 5
and 6 and are shown in
Fig. 7, where dmax and
the isochrone size vary,
respectively. For grid net-
works, MINEX’s memory
requirements grow linearly
in dmax and with the
square root in |V iso|; INE’s
memory consumption cor-
responds to the isochrone
size, i.e., |V MM | = |V iso|,
and grows quadratically in
dmax. In spider networks,
the memory complexity is
constant for MINEX and
linear in dmax for INE.

Figure 8 shows the memory complexity for the real-world data sets. We compare ad-
ditionally with Dijkstra, IER, and PGR. As expected, MINEX’s memory consumption
is only a tiny fraction of the isochrone size, and it further decreases when the isochrone
reaches the sparse network boundary. In contrast, the memory of INE, PGR and IER
grows quadratically in dmax until the isochrone approaches the network border, where
the growing slows down. For the IT data set this effect is not visible since dmax is too
small. The memory of Dijkstra is equal to the size of the entire network, including ver-
tices and edges, which can be inferred from Table 1, e.g., 2.1 GB for IT. To keep small
values visible, the memory requirements of Dijkstra are not shown.

Figure 9 shows a 90 min isochrone for the ST network. Such regional or country-
wide networks typically have an irregular network structure, varying density of ver-
tices and edges, and fast wide-area transport systems. In this type of skewed networks,
isochrones are characterized by many remote islands, and the size of isochrones is typ-
ically only a small fraction of the (comparably very large) network. Thus, Dijkstra is
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Fig. 8. Memory Requirements in Real-World Data.

difficult to apply due to its high memory complexity, whereas MINEX requires only a
tiny amount of memory (which in practice is even much smaller than the isochrone).

Fig. 9. Isochrone in the Regional ST Network.

5.3 Multiple Loading of Tuples

The experiment in Fig. 10 measures the total number of tuples (i.e., network edges)
that are loaded from the database, using a logarithmic scale. MINEX and INE load the
minimal number of tuples since each edge is loaded only once. They converge towards
Dijkstra when the isochrone approaches the network size. In Fig. 10(a) IER and PGR
load approximately the same number of tuples as MINEX since there is no overlapping
in the areas that are retrieved by the range queries. This is because we have only the
high-speed trains with very few stops. In contrast, in Fig. 10(b) and 10(c) the number
of overlapping range queries is large, yielding many vertices and edges that are loaded
multiple times. The reason here is the high density of public transport stops. Fig. 6
illustrates the overlapping of IER, which can be quite substantial.
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Fig. 10. Number of Loaded Tuples.

5.4 Runtime

Figure 11 shows the runtime depending on dmax and the isochrone size. For small val-
ues of dmax and small isochrones, Dijkstra has the worst performance due to the initial
loading of the entire network. For large dmax and isochrones, Dijkstra (though limited
by the available memory) is more efficient since the initial loading of the network us-
ing a full table scan is faster than the incremental loading in MINEX and INE, which
requires |V iso| point queries.
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Fig. 11. Runtime in Real World Data.

The first experiment in Fig. 11(a) on the IT data set runs on a large skewed net-
work with few and distantly located train stations. IER and PGR outperform Dijkstra
since there are almost no overlappings due to the sparse number of train stations. INE
and MINEX are slower than IER and PGR because of the larger number of database
accesses (one access for each vertex expansion), but they are more efficient than Di-
jkstra. The break-even point occurs after 600 minutes when the size of the isochrone
correspond to 38% of the network. Figure 11(b) shows the runtime of the regional net-
work ST. Dijkstra outperforms INE and MINEX after a dmax of 60 minutes when the
isochrone size corresponds to 9% of the network. IER and PGR collapse because of the
large number of overlapping loaded areas in range queries. Figure 11(c) shows the run-
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time in an urban network with a duration of one hour. The break-even point is reached
at dmax = 30min, which corresponds to 11% of the entire network.

In Fig. 12(a) we further analyze the break-even point for the real-world networks
and for grid and spider networks with 2k, 6k, and 10k vertices (G2K, S2K, . . . ).
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Fig. 12. Runtime.

We empirically determined
that the break-even point is
reached when the size of
the isochrone is between 9–
38% of the network size.
Since the runtime of both
Dijkstra and MINEX is
dominated by the database
accesses and the loading of
the (sub)network, the break-
even point occurs when the
time for MINEX’s incre-
mental loading and the time for Dijkstra’s initial loading cross. In terms of dmax, the
break-even point varies depending on the walking speed and the frequency of the public
transportation.

Figure 12(b) confirms that MINEX is independent of the network size. We compute
an isochrone of a fixed size |V iso| = 3.000 for the different real-world data sets. The
runtime of MINEX and INE is almost the same for all data sets. In contrast the runtime
of Dijkstra depends directly from the network size. IER and PGR depends on the density
of the public transport network.

6 Conclusion and Future Work

In this paper we introduced isochrones for multimodal spatial networks that can be
discrete or continuous in, respectively, space and time. We proposed the MINEX al-
gorithm, which is independent of the actual network size and depends only on the
isochrone size. MINEX is optimal in the sense that only those network portions are
loaded that eventually will be part of the isochrone. The concept of expired vertices
reduces MINEX’s memory requirements to keep in memory only the minimal set of
expanded vertices that is necessary to avoid cyclic expansions. To identify expired ver-
tices, we proposed an efficient solution based on counting the number of outgoing edges
that have not yet been traversed. A detailed empirical study confirmed the analytical re-
sults and showed that the memory requirements are very small indeed, which makes the
algorithm scalable for large networks and isochrones.

Future work points in different directions. First, we will investigate multimodal net-
works that include additional transport systems such as the use of the car. Second, we
will investigate the use of various optimization techniques in MINEX as well as new
approximation algorithms. Third, we will study the use of isochrones in new application
scenarios.
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