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Abstract. In this paper, we present a web-based system, termed ISOGA, that
uses isochrones to perform geographical reachability analysis. An isochrone in
a spatial network covers all space points from where a query point is reachable
within given time constraints. The core of the system builds an efficient algorithm
for the computation of isochrones in multimodal spatial networks. By joining
isochrones with other databases, various kinds of geospatial reachability analysis
can be performed, such as how well is a city covered by public services or where
to look for an apartment at moderate prices that is close to the working place.
ISOGA adopts a service-oriented three-tier architecture and uses technologies
that are compliant with OGC standards. We describe several application scenarios
in urban and extra-urban areas, which show the applicability of the tool.
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1 Introduction

Geospatial analysis covers various approaches to perform analysis on data with a geo-
graphical dimension and provides an important tool in many application areas, includ-
ing environmental sciences, social sciences, emergency management, or city planning.

In this paper, we describe ISOGA, a system for geographical reachability analysis
using isochrones in multimodal spatial networks. An isochrone in a spatial network is
a possibly disconnected subgraph that covers all space points from where a query point
q is reachable within a given time span and by a given arrival time at q. As an example,
consider a person looking for an apartment in a specific price range, from where his/her
working place is reachable in less than 15 minutes using the public transportation sys-
tem. Figure 1 illustrates this query for Bozen-Bolzano. The ’*’ indicates the working
place (query point), the gray area represents the isochrone, and white circles represent
buildings that satisfy the search criteria. The popup shows additional information about
one of the qualifying apartments, such as the actual distance and details on how (bus
numbers and departure times) to reach the working place.

In ISOGA, the user inputs first the parameters for an isochrone, i.e., one or more
query points, walking speed, arrival time, and a maximal timespan. At the core of the
system is an efficient algorithm for the computation of isochrones in multimodal spatial
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Fig. 1. A 15 minute Isochrone in Bolzano-Bozen.

networks together with the possibility to join an isochrone with an arbitrary relation of
geo-referenced objects, e.g., people, houses, or hotels. First, the disk-based algorithm
MINEX computes an isochrone as a subgraph of the multimodal network. Second, the
surface of the isochrone subgraph is determined. Third, the isochrone surface is joined
with a relation of geo-referenced objects, which can be specified by the user as an
arbitrary SQL expression. As the result of a query, a simple summary statistics is shown
together with a list of all objects that are located within the isochrone. The objects can
be visualized on the interactive map as well, and by clicking on an object a popup
shows additional information. ISOGA adopts a service-oriented three-tier architecture
and uses standardized OGC services for exchanging spatial data. The system can be
accessed at www.isochrones.inf.unibz.it/isoga. To summarize, the main
contributions of this paper are as follows:

– We present the ISOGA system for geographical reachability analysis in multimodal
networks, which uses isochrones to efficiently determine geo-referenced objects
that are reachable within given time constraints.

– We describe the three-tier architecture of the system with an interactive WebGIS
client that uses OGC standards for the communication between client and server.

– We discuss three application scenarios using real-world data that illustrate the ap-
plicability of ISOGA for various kinds of geographical reachability analysis.
The rest of the paper is structured as follows. Section 2 discusses related work. In

Section 3 we describe the scientific background of the system. The system architecture
is presented in Section 4. Section 5 describes three application scenarios.

2 Related Work

Previous work on isochrones, upon which this paper is based, has been presented
in [1, 4, 5, 7]. Bauer et al. [1] introduce a main memory algorithm that suffers from
a high initial loading cost and is limited by the available memory. To overcome these
limitations, Gamper et al. [4] propose a disk-based algorithm that loads the network



incrementally and is independent of the network size. This work is extended in [5] with
network expiration, which allows to keep in memory only the expansion frontier to
avoid cyclic expansions. Marciuska and Gamper [7] present two approaches to trans-
form an isochrone subgraph into a spatial area that is needed for joins with other spatial
objects. The architecture of the ISOGA system follows the WebGIS framework in [6].

Different query types have been studied for spatial network databases, e.g., [2,3,8].
Isochrones are closest to range queries which return all objects that are within a given
distance, whereas an isochrone query returns all space points within a given distance.
Isochrone queries are more flexible than range queries. Once an isochrone is computed,
it can be reused to retrieve any kind of geo-referenced objects that are located within
the isochrone without the need to compute the actual distance to these objects.

The project pgRouting3 extends the spatial DBMS PostGIS with geospatial routing
functionalities. The driving distance (isoline) function supports range queries with a dy-
namic cost parameter, but it does not support schedule-based networks. Mapnificient4

uses a simple heuristic based on the Euclidean distance to approximate isochrones.
Network expansion examines only the transportation network, whereas the reachable
areas in the pedestrian network are approximated by drawing a circle around bus stops
with a radius that is determined by the available time. A similar approach is adopted in
Mapumental5, which uses isochrones for house hunter services. The company Hacon6

offers the product Hafas that computes range queries in transportation networks. The
trip planner OpenTripPlanner7 provides an extension for isochrones to measure the ac-
cessibility to or from specific locations as well as to perform aggregate search analysis.

The ISOGA system described in this paper integrates previous work on isochrones
into a tool for geographical reachability analysis. Different from other systems, ISOGA
works for multimodal networks that represent different transportation modes, and it
efficiently computes exact isochrones rather than approximate solutions. The geo-
referenced objects used in the analysis can be specified by an arbitrary SQL query.

3 Scientific Background

3.1 Isochrones in Multimodal Networks

A multimodal network is defined as a seven-tuple N = (G,R, S, ρ, µ, λ, τ). G is a di-
rected multigraph with a set V of vertices and a multiset E of edges. Vertices represent
crossroads of the street network, stops of the public transport system, etc. Edges rep-
resent street segments, transport routes, moving walkways, etc. R is a set of transport
systems, such as the pedestrian network or the public transport system (buses, trains,
etc.). Function µ assigns to each transport system a transport mode, e.g., continuous
space and time mode (’csct’) for the pedestrian network or discrete space and time
mode (’dsdt’) for the public transport system. The functions ρ and λ assign to each
edge transport system and edge length, respectively. Finally, function τ(e, t) computes

3 www.pgrouting.org
4 www.mapnificent.net
5 http://mapumental.com/
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the time-dependent transfer time that is required to traverse edge e = (u, v) when start-
ing at u as late as possible yet arriving at v no later than time t.

Figure 2 shows a multimodal network with two transportation systems, R =
{’P’, ’B’}, representing the pedestrian network with mode µ(’P’) = ’csct’ and bus
line B with mode µ(’B’) = ’dsdt’, respectively. Solid lines are street segments of the
pedestrian network, e.g., edge e = (v1, v2) with ρ(e) = ’P’. Pedestrian edges are an-
notated with the edge length, which is the same in both directions, e.g., λ((v1, v2)) =
λ((v2, v1)) = 300. We assume a constant walking speed of 2m/s, yielding a transfer
time τ(e, t) = λ(e)

2 m/s for a pedestrian edge e. Dashed lines represent bus line B. An ex-
cerpt of the schedule is shown in Figure 2(b). The transfer time of a bus edge e = (u, v)
is computed as τ(e, t) = t − t′, where t′ is the latest departure time at u in order to
reach v before or at time t. This might include a waiting time at v.
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Fig. 2. Multimodal Network.

A location in N is any point on an edge e = (u, v) ∈ E that is accessible. We
represent it as l = (e, o), where 0 ≤ o ≤ λ(e) is an offset that determines the relative
position of l from u on e, e.g., the location of q in Figure 2 is lq = ((v2, v3), 180) =
((v3, v2), 80). In continuous space networks all points on the edges are accessible. In
discrete space networks only vertices are accessible.

The network distance, dN (ls, ld, t), from a source location ls to a destination lo-
cation ld with arrival time t at ld is defined as the minimum cost of any path from ls
to ld with arrival time t at ld if such a path exists, and∞ otherwise. The network dis-
tance is time-dependent. For instance, dN (v6, v3, 05:33:00) = 120 s because the bus
with trip id 1 departs from v6 at 05:33:00 and arrives at v3 at 05:35:00. In contrast,
dN (v6, v3, 05:34:00) = 495 s since the shortest path passes through the pedestrian net-
work, traversing the edges (v6, v5), (v5, v4), and (v4, v3).
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Fig. 3. Isochrone with dmax = 5 min, s = 2 m/s, and t = 06:06:00.

An isochrone,
N iso = (V iso, Eiso),
is defined as the min-
imal and possibly
disconnected subgraph
of G that covers ex-
actly those locations
that have a network
distance to q smaller
or equal than a user-
defined timespan dmax. In Figure 3, the boldface edges (edge segments) represent an
isochrone, which is formally represented by the vertices V iso = {v3, v2, v3, v6, v1, v7,



v4} and the edges (edge segments) Eiso = {((v0, v1), 80, 200), ((v8, v1), 130, 250),
((v2, v1), 180, 300), ((v1, v2), 0, 300), ((v3, v2), 0, 260), . . .}.

For the computation of isochrones, we use the MINEX algorithm [5], which adopts
an incremental network expansion strategy in combination with vertex expiration. The
expansion starts from q and propagates backwards along the incoming edges in all di-
rections. The multimodal network is stored in the database, and – as the expansion
proceeds – the portions of the network that eventually will form the isochrone are in-
crementally retrieved. By loading only those network portions that eventually will be
part of the isochrone and by keeping in memory only a minimal set of vertices to avoid
cyclic network expansion, MINEX is independent of the network size and the memory
requirements are only a small fraction of the isochrone size.

3.2 Creating the Surface of an Isochrone Subgraph

In order to determine objects that are located within isochrones, we have to construct an
area around an isochrone. Marciuska and Gamper [7] propose two algorithms for this.
The surface-based approach (SBA) computes a minimum bounding polygon around
the outermost edges in the isochrone. However, it is limited to isochrones in pedestrian
networks, where an isochrone consists of a single subgraph.

Algorithm: SBA∗(Eiso, size)

whileEiso 6= ∅ do
P ← ∅;
e = (u, v)← leftmost edge inEiso;
DFS(e, e, Eiso, P, 0);
g ← ST Buffer(ST MakePolygon(P ), size);
Eiso ← Eiso \ ST Within(Eiso.geo, g);
Output ST Multi(g);

Function: DFS(root, e, Eiso, P, l)

if e = root ∧ l > 0 then
P ← P ∪ geom(e)−1;
return true;

else
(u, v)← e;
if l = 0 then
P ← P ∪ geom(e);
foreach (u′, v) ∈ Eiso sorted by angle α((u, v), (u′, v)) do

if DFS(root, (u, v), Eiso, P, l + 1) then return true;
else P ← P ∪ geom(e);

return false;
else

if o(e) + o(e−1) ≤ λ(e) then
P ← P ∪ geom(e)−1 ∪ geom(e−1));
foreach (t, u) ∈ Eiso sorted by angle α((u, v), (t, u)) do

if DFS(root, (t, u), Eiso, P, l+ 1) then return true;
else P ← P ∪ geom(e);

else
P ← P ∪ geom(e)−1;

return false;

Fig. 4. Algorithm SBA∗.

Algorithm SBA∗ in
Figure 4 extends SBA by
allowing isochrones that
are composed of discon-
nected subgraphs, which
is typically the case if
public transport systems
are present in addition
to the pedestrian network.
The input parameters are
a set of edges Eiso that
represents an isochrone
and a parameter size that
represents the margin of
the buffer that is cre-
ated around the outermost
edges. SBA∗ iterates over
set Eiso and computes
in each iteration an area
around a single subgraph
of the isochrone. The al-
gorithm identifies first the
leftmost edge e in Eiso

and calls then function
DFS , which in a recur-
sive way traverses the out-
ermost edges of the sub-



graph that contains e. Parameter P returns the ordered list of points that represent the
geometry of the outermost edges. P is transformed into a polygon, and a buffer with a
margin of size size is created around the polygon. Finally, all edges that are within the
isochrone area are removed from Eiso.

Function DFS recursively computes the outermost edges of an isolated subgraph
and collects the geometry of these edges in an ordered set of points P . DFS has in
input the leftmost edge root , the currently visited edge e, the isochrone edges Eiso,
the ordered set of points P , and the recursion level l. DFS examines in a depth-first
traversal the subgraph until it returns to the root edge (i.e., the left-most edge) or no
other edges are found. If e = root and l > 0, the traversal returned to the root edge. The
geometry of the current edge is added to P (after converting the order of the points) and
the recursion terminates. Otherwise, if the recursion level l is equal to 0, the geometry
of the current edge e = (u, v) is added to P . Then, all incoming edges to v, ordered
by the angle to e, are considered by recursively calling DFS with a recursion level that
is incremented by one. If DFS returns true, the recursion is stopped. Otherwise, the
geometry of e is added to P , and the next incoming edge is considered. If l > 0, the
edges are processed in a similar way. The only difference is that we have to consider the
case that an edge might only be partially reachable; o(e) is the offset of the reachable
segment from the source vertex of e and o(e−1) is the offset of the reachable edge
segment from the target vertex of e. If o(e) + o(e−1) ≤ λ(e), the two segments cover
the entire edge, hence the recursive traversal of the edges continues. If this is not the
case, only the segment of the current edge is added and the recursion stops.

We illustrate algorithm SBA∗ using the isochrone in Figure 3. The first leftmost
edge that is identified is (v0, v1). It is passed to DFS together with Eiso, an empty
set P , and recursion level 0. DFS adds the geometry of the edge to P and iterates
then through all incoming edges to v1, sorted by their relative (counterclockwise) angle
with respect to (v0, v1), i.e., (v2, v1), (v8, v1), and (v0, v1) in that order. Next, DFS
is called with e = (v2, v1), the current set P , and recursion level 1. The recursive
traversal continues until edge (v9, v4) is encountered, which is only partially reachable.
DFS returns by one recursion level and examines edge (v5, v4), etc. Finally, the root
edge is visited again, and DFS returns to SBA∗. The points in P are transformed into
a polygon, around which a buffer with a margin of size size is created (light-gray area
in Figure 3). After removing all edges from Eiso that are enclosed in the new isochrone
area, the next leftmost edge (v8, v7) is determined, followed by a call to DFS , etc.

4 Architecture

Figure 5 shows the three-tier architecture of the ISOGA system.
Presentation Tier. The presentation tier is a WebGIS client, implemented in JSP and

JavaScript. It uses Comet8 as web application model for asynchronous data sending
and for managing long polling requests, Openlayers9 as web mapping framework, and
GeoExt10 as framework for building interactive web applications. The main tasks of
the client is the interaction with the map, the input of the query parameters, and the

8 www.cometd.org
9 www.openlayers.org

10 www.geoext.org



visualization of the results. The client communicates with the server over the HTTP
protocol using the following standardized OGC11 services: Web Map Service (WMS)
for serving geo-referenced map images and Web Feature Service (WFS) for requesting
geographical features. The client submits asynchronously three different types of HTTP
requests. An isochrone request 1© invokes MINEX for the computation of an isochrone.
A map request 2© retrieves the isochrone in form of a binary image format and includes
it as a separate layer in the map. Similar, the base layer images (e.g., the street network)
come from different sources (Google, OpenStreetMap) and are fetched via WMS. The
request is triggered during the initialization of the map, when MINEX and SBA∗ are
terminated, or whenever there is an interaction with the map (zoom, pan, identify). A
feature request 3© retrieves detailed information about a selected feature in the map
(e.g., the pop up in Figure 1). The request is triggered by clicking an object on the map.

Client

MINEX

Geo Builder

Map Builder

Geo Analysis

Server

Schedule
Street netw.

Isochrone

external
Mapserver

external DB

Database

1©

2©, 3©

4©

json

png,json

Fig. 5. Architecture.

Logical Tier. The logical tier
(server) accepts requests via a
Java Servlet. An isochrone re-
quest invokes MINEX to com-
pute an isochrone that is rep-
resented as a logical network.
This representation is passed to
the GeoBuilder module, which
performs two tasks. First, the
isochrone is annotated with ge-
ometry information and stored in
vector format in a spatial relation
in the DB. Second, the network
representation of the isochrone is transformed into a spatial area (polygon). In order
to enable the client to access the isochrone via WMS and WFS, the three tables (ver-
tices, edges, and areas) are registered as vector layers in the map builder module. As
Map Builder we use the rendering engine Geoserver12, which is accessible via stan-
dardized OGC services. For a WMS request, Geoserver reads the spatial data from the
DB and creates an image that is sent back to the client. For a WFS request, the in-
formation is retrieved from the DB and sent to the client as a feature in text format.
The Map Builder serves also as proxy for providing base layers from external servers
(e.g., Google, OpenStreetMap, Bing, etc.). The second main task of the logical tier is to
support geospatial reachability analysis. Once an isochrone is computed, the user can
specify an arbitrary SQL query that is sent to the server via a geoAnalysis request 4©.
The result of this SQL query is a table of geo-referenced objects that are joined with the
isochrone, e.g., the apartments in Figure 1. The final result is converted from a relational
format into a JSON object and sent back to the client.

Data Tier. The data tier uses a relational DBMS with a spatial extension to perform
spatial operations, such as edge clipping if an edge is only partially reached, locating the
query point to the closest edge, area buffering, or spatial intersection. The ISOGA sys-
tem works with PostGIS 2.0 as well with Oracle11g. Only standardized spatial operators
(OGC/SQL-MM) are used, which simplifies the migration to other spatial DBMSs.

11 http://www.opengeospatial.org/ 12 http://www.geoserver.org



5 Application Scenarios

In this section we describe two application scenarios that emerged from a collaboration
with the local municipality and one example that shows network expiration to illustrate
the low memory requirements of MINEX.

Scenario 1. We want to determine how well the primary schools in Bozen-
Bolzano are reachable by walking and taking the public transport system (Figure 6).

Fig. 6. Reachability of Primary Schools.

For this we compute an
isochrone with multiple
query points that represent
the schools, a maximal
duration of 15 minutes, and
an arrival time 9 am at the
schools. Next, we specify
an SQL query that re-
trieves from the inhabitants
database all kids with an
age between 6 and 11 years.
The result of the SQL query
is joined with the isochrone. The statistics shows the number and percentage of kids
that reach the closest school in less than 15 minutes. By selecting the option Outside
Isochrone for the join, it is possible to identify the number of kids who do not reach the
school within the given time constraints.

Scenario 2. We want to determine cheap apartments that are close to the work-
ing place (Figure 7). The user specifies a query point on the map that represents
his/her working place, a maximal acceptable traveling duration, and a price range

Fig. 7. Flat Search Scenario.

he/she is willing to pay.
After computing the
isochrone, an SQL query
retrieves all flats in the
specified price range. The
result is joined with the
isochrone and all available
flats that are located in the
isochrone are visualized
as circles on the map. The
example shows additional
information for one such
apartment, namely that
the working place can
be reached in 25 min by
walking first for 4 min to the closest bus station, where to take bus line 5 at 08:39 am.

Scenario 3. In this scenario we illustrate the low memory consumption of MINEX
due to network expiration (Figure 8). The user can select different datasets. Cur-
rently, the cities of Bolzano-Bozen, Washington DC, and San Francisco as well as



Fig. 8. Vertex Expiration in MINEX.

the regional networks of
South Tyrol and Italy are
available, all having differ-
ent network topologies and
transportation systems. Af-
ter computing an isochrone,
the user can open the Lay-
ers panel and activate the vi-
sualization of vertex expira-
tion. Black circles represent
the vertices that are kept in
memory to avoid cyclic ex-
pansions. White circles rep-
resent expired vertices that
are removed from memory
to minimize the memory re-
quirements.

6 Conclusion and Future Work

In this paper, we presented the web-based system ISOGA that uses isochrones to per-
form geospatial reachability analysis. Core features of the system are the support of
multimodal networks and the possibility to join isochrones with the result of gen-
eral SQL queries, which allows to analyze the reachability of various types of geo-
referenced objects without the need to compute the distance of each object. The system
adopts a service-oriented, three-tier architecture and uses technologies that are compli-
ant with OGC standards. Future work includes the further development of the analysis
component as well as the implementation of ISOGA for a mobile client.
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